diff --git a/scripts/LineNorm.m b/scripts/LineNorm.m
deleted file mode 100644
index 414aa91a8932aae42acee9e876a1359fb70a3f37..0000000000000000000000000000000000000000
--- a/scripts/LineNorm.m
+++ /dev/null
@@ -1,127 +0,0 @@
-coarsefile = '../new_case_4/results/bernd_dfm_lefttoright.mat';
-load(coarsefile);
-%load 'coarse file.mat'
-X = Points;
-
-FRAC = true;
-if FRAC
-%    i = 2; %fracture identity
-    Xp = fracxandp{i}; % The fracture information has here the format
-    endpoints=[Xp(1, 1:2); Xp(end, 1:2)];
-
-    % [x1(c) y1(c) p(c); x2(c) y2(c) p(c)] for cell c in position
-    % Xp(2*c-1:2*c, :), the coordinates being the vertices of the fracture.
-end
-
-%load geiger_permeable_reference.mat
-load anna_reference_lefttoright.mat
-
-
-% Both the "coarse" and "fine" input files are assumed to have a triangulation
-% CELL t with one (number of vertices of the cell) x 1 pointer to the points
-% x of each grid cell and vector p for pressure in each cell (length(p) ==
-% length(t)). In case a fracture is being evaluated, the only coarse
-% simulation information needed is fracxandp, a cell containing the
-% pressure and coordinate information for each fracture.
-% Capital Letters Indicate The Coarse Grid.
-
-boundary_line = false;
-
-%segment = [endpoints(1),endpoints(2,1)];
-segment = [1, 1];
-% assign two identical values for the whole cross-section of
-% the domain. Assign x values for the endpoints of the desired segment
-% unless the line is vertical, in which case the two y values should be
-% provided.
-% NOTE the segments are assumed to be chosen so that the cells end at the
-% endpoints (fracture endpoints, in our case). If not, only the part of the
-% line that is covered by coarse and fine cells lying in the interior of
-% the segment is evaluated.
-if endpoints(1)==endpoints(2)
-    a=endpoints(1);
-    b=0;
-    isvertical = true;
-    if segment(1) == segment(2)
-        fracture_length = abs(endpoints(3)-endpoints(4));
-    else
-        fracture_length = abs(segment(1)-segment(2));
-    end
-else
-    a = (endpoints(2,2) - endpoints(1,2)) / (endpoints(2,1)-endpoints(1,1));
-    b = endpoints(1,2) - a*endpoints(1,1);
-    isvertical = false;
-    if segment(1) == segment(2)
-        fracture_length = hypot(abs(endpoints(1)-endpoints(2)), ...
-                                abs(endpoints(3)-endpoints(4)));
-    else
-        fracture_length = hypot(abs(segment(1)-segment(2)), ...
-                                abs(endpoints(3)-endpoints(4)));
-    end
-end
-
-
-[nw, vertices_on] = check_points(x,a,b,isvertical);
-if ~FRAC
-    [Nw, Vertices_on] = check_points(X,a,b,isvertical);
-end
-%must unfortunately allow for cells with different number of vertices both
-%for fine grid (Bernd uses both for the hydrocoin case, at least) and coarse.
-% Therefore, cell_points_on is a CELL with nvertices(c) pointer extracted
-%from t. c_p_nw_on is the corresponding logical nw cell.
-
-[cell_points_on, p_on, c_p_nw_on, cell_vertices_on, vertices_p] = ...
-        extract_on_line(t,x,nw,vertices_on,p);
-if ~FRAC
-    [Cell_points_on, P_on, C_p_nw_on, Cell_vertices_on, Vertices_p] = ...
-            extract_on_line(T,X,Nw,Vertices_on,P);
-else
-    Cell_vertices_on = [];
-    Vertices_p = [];
-end
-
-
-if ~boundary_line && ~isempty(cell_vertices_on)
-
-    [cell_vertices_on, vertices_p] = combine_faces(cell_vertices_on, vertices_p,isvertical);
-end
-if ~boundary_line && ~isempty(Cell_vertices_on)
-
-    [Cell_vertices_on, Vertices_p] = combine_faces(Cell_vertices_on, Vertices_p,isvertical);
-end
-
-
-% find the points where the line intersects each of the fine and coarse
-% cells, respectively. Format intersectionpoints(c) = [x1,y1,x2,y2] for the
-% two points for cell c.
-
-
-[intersectionpoints] = intersections_of_cells(endpoints, isvertical, ...
-                                    cell_points_on, c_p_nw_on);
-
-if FRAC
-    n = length(Xp);
-    ind_two = linspace(2,n,n/2);
-    ind_one = ind_two-1;
-    Intersectionpoints = [Xp(ind_one,1:2), Xp(ind_two,1:2)];
-    P_on = Xp(ind_two,3);
-else
-    [Intersectionpoints] = intersections_of_cells(endpoints, isvertical, ...
-                                    Cell_points_on, C_p_nw_on);
-end
-
-% Add the values for the faces coinciding with the line:
-if ~isempty(cell_vertices_on)
-    intersectionpoints = [intersectionpoints;cell_vertices_on];
-    p_on = [p_on;vertices_p];
-end
-if ~isempty(Cell_vertices_on)
-    Intersectionpoints = [Intersectionpoints;Cell_vertices_on];
-    P_on = [P_on;Vertices_p];
-end
-
-
-% Loop through large cells, find smalls cells (partly) inside and evaluate
-% norms
-[E2] = evaluate_norm(Intersectionpoints, intersectionpoints, P_on, p_on, isvertical,segment);
-dP2 = (max(p)-min(p))^2*fracture_length;
-Erel = sqrt(E2)/sqrt(dP2)