diff --git a/scripts/extract_on_line.m b/scripts/extract_on_line.m index 55b0d074dd6f5cb7f4b2c6b050fa1aedeb928e75..c7abf946cf4118dc608bc2097d598e3fd1b91e21 100644 --- a/scripts/extract_on_line.m +++ b/scripts/extract_on_line.m @@ -1,92 +1,95 @@ -function [ cell_points_on, p_on, cell_points_nw_on, cell_face_on,p_on2 ] ... - = extract_on_line( t, x, nw,on, p ) -%UNTITLED4 returns cell_points (pointers to x) and p for each cell -%on the line. cell_on_line is the logical vector s.t. p(c_o_l)=p_on. -%cell_points_nw_on has a cell for each grid cell with the logical information -%whether the cell_points_nw_on{c}(i) pointed to by cell_points{c}(i) lies nw -% NB for generality, t is assumed to be a cell. Note that in the case -% that a face lies on the line, a matrix is filled, because we know the -% exact number of points (2) in this case. - -count=1; -count2=1; - -cell_points_on = cell(0,1); -cell_points_nw_on = cell(0,1); -cell_face_on = zeros(0,4); -p_on = zeros(0,1); -p_on2 = zeros(0,1); -noton = ~on; -if iscell(t); - - for c = 1:length(t) - cells = t{c}; - points_nw = nw(cells); - cell_on_line = not(all(points_nw) | all(not(points_nw))); - vert_on = on(cells); - % two vertices on the line - if sum(vert_on) == 2 - vert_not = noton(cells); - not_on_nw = points_nw(vert_not); - % check that it is really a face, not e.g. point 1 and 3 of a - % quadrilateral - if all(not_on_nw) || all(~not_on_nw) - ind = find(vert_on); - cell_face_on(count2,1:2) = x(cells(ind(1)),:); - cell_face_on(count2,3:4) = x(cells(ind(2)),:); - p_on2(count2,1) = p(c); - count2 = count2+1; - %else it should be included in the main cell: - else - cell_points_on{count} = x(cells,:); - cell_points_nw_on{count} = points_nw; - p_on(count,1) = p(c); - count = count + 1; - end - % cells intersected by the line, not two vertices on it - elseif cell_on_line - cell_points_on{count} = x(cells,:); - cell_points_nw_on{count} = points_nw; - p_on(count,1) = p(c); - count = count + 1; - - end - end -else - for c = 1:length(t) - cells = t(c,:); - points_nw = nw(cells); - cell_on_line = not(all(points_nw) | all(not(points_nw))); - vert_on = on(cells); - % two vertices on the line - if sum(vert_on) == 2 - vert_not = noton(cells); - not_on_nw = points_nw(vert_not); - % check that it is really a face, not e.g. point 1 and 3 of a - % quadrilateral - if all(not_on_nw) || all(~not_on_nw) - ind = find(vert_on); - cell_face_on(count2,1:2) = x(cells(ind(1)),:); - cell_face_on(count2,3:4) = x(cells(ind(2)),:); - p_on2(count2,1) = p(c); - count2 = count2+1; - %else it should be included in the main cell: - else - cell_points_on{count} = x(cells,:); - cell_points_nw_on{count} = points_nw; - p_on(count,1) = p(c); - count = count + 1; - end - % cells intersected by the line, not two vertices on it - elseif cell_on_line - cell_points_on{count} = x(cells,:); - cell_points_nw_on{count} = points_nw; - p_on(count,1) = p(c); - count = count + 1; - - end - end -end - -end - +function [ cellPointsOn, pOn, cellPointsNorthWestOn, cellFaceOn, pOn2 ] ... + = find_on_line( t, x, northWest,on, p ) +%find_on_line returns cellPoints (pointers to x) and p for each cell +%on the line. +%cellOnLine is the logical vector s.t. p(c_o_l)=p_on. +%cellPointsNorthWestOn has a cell for each grid cell with the logical information +%whether the cellPointsNorthWestOn{c}(i) pointed to by cell_points{c}(i) lies +%nw of the line. This (and the two last outputs) are given to avoid performing +%calculations multiple times. +% NB for generality, t is assumed to be a cell. Note that in the case +% that a face lies on the line, a matrix is filled, because we know the +% exact number of points (2) in this case. + +count=1; +count2=1; + +cellPointsOn = cell(0,1); +cellPointsNorthWestOn = cell(0,1); +cellFaceOn = zeros(0,4); +pOn = zeros(0,1); +pOn2 = zeros(0,1); +notOn = ~on; +if iscell(t); + + for c = 1:length(t) + cells = t{c}; + pointsNorthWest = northWest(cells); + cellOnLine = not(all(pointsNorthWest) || all(not(pointsNorthWest))); + verticesOn = on(cells); + % two vertices on the line + if sum(verticesOn) == 2 + verticesNot = notOn(cells); + notOnNorthWest = pointsNorthWest(verticesNot); + % check that it is really a face, not e.g. point 1 and 3 of a + % quadrilateral + if all(notOnNorthWest) || all(~notOnNorthWest) + ind = find(verticesOn); + cellFaceOn(count2,1:2) = x(cells(ind(1)),:); + cellFaceOn(count2,3:4) = x(cells(ind(2)),:); + pOn2(count2,1) = p(c); + count2 = count2+1; + %else it should be included in the main cell: + else + cellPointsOn{count} = x(cells,:); + cellPointsNorthWestOn{count} = pointsNorthWest; + pOn(count,1) = p(c); + count = count + 1; + end + % cells intersected by the line, not two vertices on it + elseif cellOnLine + cellPointsOn{count} = x(cells,:); + cellPointsNorthWestOn{count} = pointsNorthWest; + pOn(count,1) = p(c); + count = count + 1; + + end + end +else + for c = 1:length(t) + cells = t(c,:); + pointsNorthWest = northWest(cells); + cellOnLine = not(all(pointsNorthWest) | all(not(pointsNorthWest))); + verticesOn = on(cells); + % two vertices on the line + if sum(verticesOn) == 2 + verticesNot = notOn(cells); + notOnNorthWest = pointsNorthWest(verticesNot); + % check that it is really a face, not e.g. point 1 and 3 of a + % quadrilateral + if all(notOnNorthWest) || all(~notOnNorthWest) + ind = find(verticesOn); + cellFaceOn(count2,1:2) = x(cells(ind(1)),:); + cellFaceOn(count2,3:4) = x(cells(ind(2)),:); + pOn2(count2,1) = p(c); + count2 = count2+1; + %else it should be included in the main cell: + else + cellPointsOn{count} = x(cells,:); + cellPointsNorthWestOn{count} = pointsNorthWest; + pOn(count,1) = p(c); + count = count + 1; + end + % cells intersected by the line, not two vertices on it + elseif cellOnLine + cellPointsOn{count} = x(cells,:); + cellPointsNorthWestOn{count} = pointsNorthWest; + pOn(count,1) = p(c); + count = count + 1; + + end + end +end + +end +