diff --git a/scripts/Exact2dNorm.m b/scripts/Exact2dNorm.m
deleted file mode 100644
index 5c89cc5867acec0f4803e38d0d13d44e3c5cd1bd..0000000000000000000000000000000000000000
--- a/scripts/Exact2dNorm.m
+++ /dev/null
@@ -1,117 +0,0 @@
-%% Load
-clear
-tic
-coarse  = '../new_case_4/results/bernd_dfm_lefttoright.mat';
-fine    = 'anna_reference_lefttoright.mat';
-% coarse  = 'permeable_kanskje_homo2.mat';
-% fine    = 'geiger_permeable_reference.mat';
-load(coarse,'T','P','Points')
-Points = double(Points);
-% Assumes the triangulation/connectivity list T is a matrix, i.e. all cells
-% of equal number of vertices. Co-dimension one fracture cells may be left
-% out (they shouldn't contribute to the norm anyway) if they cause trouble.
-% Pressure vector P and npoints x 2 point list Points.
-
-load(fine,'t','p','x','domainarea')
-
-points  = x;
-
-
-nc          = length(t);
-max_n_nodes = 4; % for the fine mesh
-t_nan      = NaN(nc,max_n_nodes);
-remain      = true(nc,1);
-facelength  = zeros(nc,max_n_nodes);
-e           = zeros(nc,1);
-plotE       = zeros(nc,1);
-% on coarse corners
-for c = 1:length(t)
-    id                          = t{c};
-    t_nan(c,1:length(id))      = id;
-    pol                         = points(id,:);
-    [in,on]     = inpolygon(Points(:,1),Points(:,2),pol(:,1),pol(:,2));
-    Point_id    = find(in & ~on);
-    if ~isempty(Point_id)
-        if sum(Point_id)>1
-            uniquep = unique(1e-5.*round(1e5.*Points(Point_id,:)),'rows'); %some methods 
-            % define certain points twice
-            if size(uniquep,1)>1
-                disp(uniquep);
-                error('small cell %i surrounds the above listed course points',c);
-                % Occurs for too large fine cells compared to the coarse
-                % cells. Violates assumptions used below and renders the
-                % code useless.
-            end
-        end
-        for Pid = 1:length(Point_id)
-
-            Cs = find(any(T==Point_id(Pid),2));
-            for i = 1:length(Cs)
-                C       = Cs(i);
-                Id      = T(C,:);
-                Pol     = Points(Id,:);
-                a       = area_on_coarse_point(pol,Pol,Points(Point_id,:));
-                dp      = P(C)-p(c);
-                e(c)    = e(c) + (dp)^2*a;
-
-                afracdp     = dp*a/polyarea(pol(:,1),pol(:,2));
-                plotE(c)    = plotE(c) + afracdp;
-            end
-        end
-        remain(c) = false;
-
-    end
-end
-%%
-% eliminate the cells already taken care of
-t2              = t(remain);
-t_nan2          = t_nan(remain,:);
-nanind          = isnan(t_nan2(:,4)); % obs bare for 3+4
-t3              = t_nan2;
-t3(nanind,4)    = t_nan2(nanind,1);
-e2              = zeros(size(t_nan2,1),1);
-plotE2          = zeros(size(e2));
-p2              = p(remain);
-
-
-for C = 1:length(T)
-    % construct coarse cell
-    Id                  = T(C,:);
-    Pol                 = Points(Id,:);
-
-    % Find fine points inside the coarse cell
-    [in,on]             = inpolygon(points(:,1),points(:,2),Pol(:,1),Pol(:,2));
-    points_in           = find(in & ~on);
-
-    % Distinguish between cells completely and partly inside large cell
-    tr_in               = ismember(t_nan2,points_in);
-    cells_in            = find(any(tr_in,2));
-    cells_completely_in = cells_in(all(ismember(t3(cells_in,:),points_in),2));
-    cells_partly_in     = setdiff(cells_in,cells_completely_in);
-
-    % Evaluate for the two cases
-    for i = 1:length(cells_completely_in)
-        c       = cells_completely_in(i);
-        x       = points(t2{c},:);
-        [~,a]   = convhull(x);
-        dp      = (P(C)-p2(c))^2;
-        e2(c)   = dp*a;
-        plotE2(c)       = P(C)-p2(c);
-    end
-    for i = 1:length(cells_partly_in)
-        c       = cells_partly_in(i);
-        pol     = points(t2{c},:);
-        a       = area_on_face(pol,Pol);
-        dp      = (P(C)-p2(c));
-        e2(c)   = e2(c) + dp^2*a;
-        afracdp         = dp*a/polyarea(pol(:,1),pol(:,2));
-        plotE2(c)       = plotE2(c) + afracdp;
-    end
-end
-e(remain) = e2;
-plotE(remain) = plotE2;
-
-toc
-deltaP = max(p)-min(p);
-Erel_m = sqrt(sum(e))/(deltaP*sqrt(domainarea));
-save(coarse,'Erel_m','plotE','-append')