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Abstract We present a two-step up-scaling approach that allows to derive the jump
conditions that must be imposed at the interface to account for transport phenomena in a
fluid/porous domain. This general approach is first applied to a heat conduction problem to
illustrate the main steps of the analysis. The heat flux and temperature jump conditions are
related to surface-excess quantities, whose values depend on the interface location. Good
agreement between the mesoscopic and macroscopic results are obtained, whatever the posi-
tion of the interface inside the transition region. The approach is then applied to the problem
of a laminar flow over a porous medium. The Beavers and Joseph relation is recovered, but
only for a particular position of the interface.
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1 Introduction

For the study of practical applications involving flows and heat transfer over porous media,
the most commonly used modeling approach is to consider two homogeneous regions (a free
fluid region and a porous region) separated by a discontinuous interface. To connect the trans-
port models used in each region, appropriate boundary conditions need to be specified at this
interface. The determination of these boundary conditions is the subject of many different
contributions, the most famous being the semi-empirical relation introduced by Beavers and
Joseph (1967) to model the momentum transfer for a Poiseuille flow over a porous medium:
du o
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Here, u is the velocity in the direction tangential to the interface, K, is the permeability of the
porous medium, Up is the Darcy velocity in the porous medium, up is the slip velocity at the
interface and « is a dimensionless jump coefficient. This relation allows to take into account
the non-zero velocity that develops at the permeable wall. Regarding the jump coefficient
«, many studies have focused on the determination of its value (Taylor 1971; Beavers et al.
1974; James and Davis 2001). It depends strongly on the geometry of the transition region
but also on the exact location of the interface (Larson and Higdon 1986, 1987; Sahraoui and
Kaviany 1992; Saffman 1971; Saleh et al. 1993). However, no agreement on a best choice
for the exact location of the interface inside the transition region has been reached.

This ambiguity concerning the localization of the interface is representative of the confu-
sion that exists between the different scales of description of the fluid/porous interface, the dif-
ferent models associated to these scales and the way these models are derived. This confusion
arises because one needs to connect two domains that are commonly treated using two differ-
ent approaches: in the free fluid domain, the flow is modeled using the Navier—Stokes equa-
tions and is therefore represented at a microscopic scale, whereas in the porous domain, the
flow is represented using a macroscopic model (e.g., Darcy, Forchheimer, Darcy—Brinkman
equations). The difficulty is thus to connect these two domains, which are modeled using
different scales of description, in a way that takes into account the transfers at the fluid/porous
interface.

To deal with this difficulty, Ochoa-Tapia and Whitaker (1995) introduce the idea of
deriving these boundary conditions, starting from the knowledge of the flow at the micro-
scopic scale and using up-scaling methods. They obtain a stress jump boundary condition
that is widely used (e.g. Kuznetsov 1997; Breugem et al. 2005). However, this jump con-
dition still depends on an unknown parameter which depends on the exact location of the
interface. Following their up-scaling idea, Chandesris and Jamet (2006) developed a two-
step up-scaling methodology based on three different levels of description of the interface
(Fig.1). The introduction of these three levels of description is very important to dissociate
the different steps of the interface modeling process, to identify the characteristic length
scales associated to each level and to clarify the hypotheses and concepts associated to each
scale of description.

First, we present this multi-scale approach from a general point of view in Sect. 2. To
illustrate how this method can be applied to study transport phenomena at a fluid/porous
interface, a heat conduction problem is studied in Sect. 3. In the last part, Sect. 4, we come
back to the empirical slip boundary condition of Beavers and Joseph (1) and show how it can
be recovered from the results of this multi-scale approach.

2 Modeling Approach
2.1 First Up-scaling Step

When studying physical phenomena in hybrid fluid/porous domains, the flow in the porous
domain is represented using a macroscopic model. This macroscopic description is obtained
after an up-scaling step, which can be performed using the volume averaging method
(Whitaker 1999). To solve the modeling difficulty in the vicinity of the interface region,
the idea is to apply the averaging volume of size ry not only in the porous region but also in
the entire domain and in particular across the interfacial region. Thus, the same averaging
volume is used in the whole domain. After such a volume averaging procedure, the vicinity of
the interface region is a continuous transition region across which all the physical variables
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Fig. 1 The interface between a homogeneous porous medium and a free fluid region at different scales of
description

encounter strong but nevertheless continuous variations. The porosity, which is the average
of the fluid indicator function, is represented in Fig. 1. The homogeneous porous region has
a constant porosity ¢, the interfacial transition region is characterized by a spatially varying
porosity and the homogeneous free fluid region has a porosity equal to unity. The thickness
§ of the transition region is of the order of magnitude of ry.

After applying the same averaging volume in the whole domain, closure relations must
be determined to obtain the effective properties of the medium. In the homogeneous porous
region the validity of the closure relations can be proved under certain length scale constraints.
In the interfacial transition region, these length scale constraints are not verified. To close the
model in this region, two different approaches can be proposed. The first approach consists
in deriving and solving a closure problem (Valdes-Parada et al. 2006, 2007b). However, the
derivation of the closure problem is complex and its resolution is not always possible or is
the subject of ongoing research. In the second approach, the form of the closed equation
is postulated a priori and its validity is checked a posteriori. The effective properties in the
interfacial transition region are deduced from the filtering of microscopic numerical simula-
tions (Breugem et al. 2004; Chandesris and Jamet 2007). In this study, we will follow this
second approach to determine the effective properties in the interfacial transition region. The
transfers that occur in the interfacial transition region are modeled in this continuous model
through these effective varying properties.

This first up-scaling step goes from a microscopic level where the characteristic length is
the size of the solid inclusions to another level, which we named mesoscopic scale, where
the fluid and solid phases have been replaced by an effective medium whose characteristic
length is the scale of variation of the averaged quantities L. This first up-scaling is associated
to the modeling of the porous medium. However, since the same averaging volume is applied
in the whole domain and in particular in the vicinity of the interface, this up-scaling step
introduces a new characteristic length, namely, the thickness & of the interfacial transition
region.
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2.2 Second Up-scaling Step

At the mesoscopic level, the physical fields vary continuously throughout the entire domain,
albeit some of them (porosity, effective transport properties) vary very steeply within the inter-
facial transition region of thickness §. The macroscopic level corresponds to a description
where the interface is discontinuous and where the effective transport properties are constant
on both sides of the interface. Although the mesoscopic continuum description accounts
for the underlying physic of the problem, the macroscopic level is generally more useful for
the study of practical applications. Thus, a second up-scaling step is performed to go from
the diffuse description of the interface to a discontinuous one. This second up-scaling is
associated to the modeling of the interface. It has been thoroughly studied for liquid/liquid,
liquid/vapor or liquid/solid interfaces (Emmerich 2003; Anderson et al. 1999; Edwards et al.
1991; Whitaker 1992).

In this up-scaling, the continuous transition region, characterized by varying effective
transport properties, is replaced by a discontinuous interface with constant effective trans-
port properties on both sides of the interface. By doing this, one looses the local information of
the mesoscopic model about the local transfers that occur in the interfacial transition region.
However, the idea is to keep the macroscopic effects of the local transfers that occur within
the interfacial transition region. For that, these macroscopic effects are modeled through jump
boundary conditions that are assigned at the discontinuous interface. If the overall transfers
are conserved during this up-scaling process, the mesoscopic and macroscopic solutions will
not differ outside the interfacial transition region. Nevertheless, one expects that the two
solutions will be different in the interfacial transition region since the local information of
the mesoscopic model is lost.

To ensure the conservation of the overall transfers in the interfacial transition region, the
idea (Edwards et al. 1991) is to compare the integrals of the meso- and macroscopic conser-
vation equations in the entire domain. The difference represents the macroscopic effects of
what has been lost by considering a macroscopic model instead of a mesoscopic one inside
the transition region. As we will see in an example in the next section, this difference makes
jumps appear at the interface and these jumps are related to excess-quantities. We recall that
for any physical field ¥, its excess quantity is defined by:

Ym “+o00
e = / W) — W) dy + / W(y) — ) dy @)
Yy

—00 M

where 1 is the mesoscopic representation of the studied field, ¥ and W™~ are the macro-
scopic representations of this field in the two homogeneous regions, and yj, is the loca-
tion of the discontinuous interface. In Fig. 2, the excess quantity is represented by the
shaded area. It represents exactly the amount of the i field that is not taken into account
by the macroscopic model in the interfacial transition region compared to the mesoscopic
model.

It can be noticed that an excess quantity can be either positive or negative. It depends on
how the transfer (or physical property) behaves in the interfacial transition region compared
to how it behaves in the homogeneous regions. For example, for a reactive process, one can
imagine that it can be inhibited in the interfacial transition region compared to the homo-
geneous regions. In this case, one would obtain a negative excess of reaction rate. To take
into account the overall reaction rate in the interfacial transition region at the macroscopic
scale, one will assign a negative excess reaction rate to the interface. On the contrary, if there
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Fig. 3 Sign of a surface-excess quantity depending on the location of the interface

is a catalyst in the interfacial transition region, one would obtain a positive excess reaction
rate.

However, a positive or negative excess-quantity is not always related to a particular phe-
nomenon that takes place in the interfacial transition region and not in the homogeneous
regions. It is also related to a quantity that varies monotonically in the interfacial transition
region, but has two different asymptotic values ¥~ and W. In this case, if the interface is
located on one side of the transition region, one will obtain an excess quantity with a given
sign. And if the interface is located on the other side of the transition region, the excess
quantity will be of the opposite sign (see Fig. 3).

To illustrate the different steps of this multi-scale approach, we study in the next section
a heat conduction problem in a fluid/porous domain.

3 Heat Conduction in a Fluid/Porous Domain

In this section, we consider a steady-state heat conduction problem in a domain partially filled
with a porous medium, as the one presented in Fig. 1. We assume that a constant volumetric
heat source, S, exists in the solid, whereas there is no heat source in the fluid. This heat
source is introduced to show the consequences on the jump condition of a volumetric source
term. The results obtained with and without this source term are discussed in Sect. 3.2.1.
Noting k¢ and k¢ the microscopic thermal conductivities of the fluid and solid, respectively,
the equations governing the system at the microscopic scale are given by:

V - (k¢ VTt) = 0 in the fluid phase 3)
V (ks VTy) + S = 0 in the solid phase )
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At the fluid—solid interface A;, the boundary conditions are:

Te =Ty on A; )
ng - keVITy = ng - ksVTy on A; 6)

where ng is the unit normal vector oriented outward from the fluid into the solid phase.

3.1 First Up-scaling Step
3.1.1 Mesoscopic Governing Equations

The mesoscopic governing equations for (7;)" and (7%)* are obtained by applying the phase
average operator (Whitaker 1999) to the microscopic Egs. 3 and 4. Assuming the local
thermal equilibrium, we have the approximation (Tf)f = (T)® = (T), where (T) is the
volume-averaged temperature defined by:

1

g»:v/ﬁuv=¢m#+u—¢ﬂms ™
\4

A one-equation model is obtained by adding the mesoscopic equations obtained for (77)
and (T5)* (Kaviany 1995, Chap. 3):

V-[(¢kf+(1—¢)ks)V(T>]+V-[kf;ks/ nfsdeA]
Aj
(1= $)8, =0 ®

where wv F=vr— (w f)f. The assumption g < L is used to derive this equation. To close
this equation, one still needs to model the term of the left-hand side of Eq. 8 that involves
microscopic quantities through T;.

For the homogeneous porous region, it has been shown (Nozad et al. 1985) that Eq. 8
reduces to:

v [ v ()] + (1= ) =0 ©)

where kgff is the effective thermal conductivity tensor of the porous medium.

In the homogeneous free fluid region, the porosity is equal to one. Assuming that rg < L,
we have the approximation (7)) = (Tf)f ~ Tt. Finally, since there is no solid, Eq. 8 reduces
to the heat conduction equation valid at the microscopic scale in the fluid phase Eq. 4.

In the interfacial transition region, the resolution of the closure problem is much more
complex. First, the length scale constraint ryp < L and the local thermal equilibrium assump-
tion used to derive Eq. 8 are not valid and a more complex equation is obtained as the result
of the averaging process (see Valdes-Parada et al. (2007a) for example). Then, the determi-
nation and the resolution of the closure problem associated to the obtained equation are very
complex. First, the length scale constraint ryp < L used to simplify the closure problem in
the homogeneous porous region is not valid. Second, the property of periodicity of the unit
cell used to solve the closure problem in the homogeneous porous region disappears. Thus,
as mentioned in Sect. 2.1, we follow another approach. We postulate the form of the closed
equation and deduce the associated effective properties by filtering microscopic numerical
simulations.

To postulate the form of the closed equation in the interfacial transition region, we sup-
pose that no other phenomenon than the one acting in the homogeneous regions have to
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be taken into account. Thus, we assume that there exists an effective thermal conductivity
tensor k! (x) such that the interfacial transition region is well represented by the following
equation:

V- [k x) - VAT [+ (1 - ¢(x) S =0 (10)

where x is the coordinate vector x = (x, y, z). A profile of Kk (x) for one particular geometry
will be deduce by filtering a microscopic numerical simulation in the next section. Finally,
at the mesoscopic scale, the problem is governed by a single transport equation (10).

3.1.2 Effective Thermal Conductivity in the Interfacial Region

The objective of this section is to show how to determine the effective thermal conductivity at
the mesoscopic scale k°(y) for a two-dimensional porous medium made of cubes as shown
in Fig. 4a. Because the problem is periodic in the x-direction, it is sufficient to simulate only a
single column of cubes and to apply periodic boundary conditions in the horizontal direction.
For practical reasons regarding the implementation of the volume-averaging filter, we have
computed three columns of cubes. In the y-direction five cubes have been used. The idea is
to take enough cubes to ensure that in the core of the porous medium the averaged properties
are uniform, but not too many to reduce the computational cost. The distance between two
cubes is dp and the size of a cube is 2 dp. Thus, ¢, = 5/9. The origin of the y-axis has been
arbitrarily located one d}, above the last cube and the ratio d},/ H was fixed at 1/16 = 0.0625.
The ratio kg/ ks has been fixed at 50 to be consistent with Sahraoui and Kaviany (1992). A
constant and uniform temperature Timp g imposed at the lower wall, such that 7 = 10 at
the upper wall. This value is arbitrary, since in this problem, the temperature is defined up
to a constant. A constant and uniform heat flux ¢'™P = —1 is imposed at the upper wall of
the domain. For the constant volumetric heat source in the solid S, we arbitrary choose a
Damkohler number of 10, where Dy, = SqH /|qimpl. In this case, the Damkohler number
compares the heat flux coming from a heat source to the heat flux evacuated by conduction.

The microscopic temperature field is obtained by solving numerically the system 3—4 on
a uniform Cartesian mesh. For the spatial discretization, the finite-volume method is used
with a second-order central-differencing scheme. The obtained microscopic fluid temperature
field is presented in Fig. 4b.

The mesoscopic fields (T) (y) and ¢(y) = (x), where x is the fluid phase indicator
function, are obtained by volume-averaging their corresponding microscopic fields. This
averaging is performed using the averaging volume and the cellular weighting function m (x)
proposed by Quintard and Whitaker (1994), which are adapted to ordered porous medium:

2 /72 _
m(x) = [glizla — /2, il <l

s Xl >

an

where [ is the length of the unit cell (! = 3d,, in this example) and x; is the coordinate in
direction i. The averaging volume corresponding to our geometry is presented in Fig. 4a. It
can be noticed that since the filtering process is defined as a convolution product, it ensures
the continuity of the physical variables at the mesoscopic scale. Furthermore, since the cel-
lular weighting function m(x) is continuous and piece-wise differentiable, it ensures that the
gradient of the mesoscopic variables is continuous. The obtained porosity profile is presented
Fig. Sc. Itis constant, equal to ¢, for y < —3d,, varying in the interfacial transition region
for —3d, < y < 2d, and constant equals to unity for y > 2d,,. The mesoscopic temperature
profile is presented Fig. 5a along with the microscopic temperature profile at x/H = 0.
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Fig.4 Heat conduction in a fluid/porous domain. a Description of the geometry. b Iso-contours of the micro-
scopic fluid temperature T¢(x, y)

We introduce the mesoscopic heat flux, ¢ (y), defined by:

d(T
q(y) = —k%)% (12)
y
It is such that:
d
= =p0DS, (13)
Yy

Since the heat flux at the upper boundary is known, g(H) = ¢'™P, ¢(y) can be determined
unambiguously from the porosity profile ¢ (y). Then, the effective thermal conductivity can
be deduced using Eq. 12. The corresponding profiles are presented Fig. 5b and c. The effective
thermal conductivity is constant in both homogeneous regions (for y < —3d,, and y > 2d,)
and varies smoothly across the interfacial transition region. Thus, the effective properties of
the porous medium (¢ and k) are uniform in the core of the porous medium (y < —3dp)
which confirms our choice of taking only five cubes in the y direction.
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Fig. 5 Results at the mesoscopic scale. a Microscopic and mesoscopic temperatures. b Heat source and heat
flux at the mesoscopic scale. ¢ Porosity and effective thermal conductivity

3.2 Second Up-scaling Step

The variations of ¢ (y) and k*f(y) in the interfacial transition region obtained in the last
section account for the local heat conduction transfer that occurs in this region. However,
for practical applications, one will distinguish only their constant asymptotic values. The
objective of this section is to derive the jump conditions that must be applied at the interface
at the macroscopic scale, to still account for the overall heat transfer. To avoid any confusion,
the temperature solution of the macroscopic problem is noted Tt in the free fluid region and
fp in the porous region.

3.2.1 Heat Flux Jump Condition

In order to ensure the overall conservation of energy, the jump conditions are obtained by
integrating in the entire domain, the difference between the mesoscopic and the macroscopic
equations (see Sect. 2.2). In the free fluid region (i.e., for yys < y < H), this difference is
given by:

d d(T) d7; |
— KT =L — k=L |+ (1= ¢() S =0 (14)
dy dy dy
In the porous region (i.e., for —H < y < yy), it is given by:
d d(T) T, |
& gett A i — S=0 15
i [ D) i S +(dp —d () Ss (15)
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Integrating Eq. 14 between yy and H and Eq. 15 between —H and yy, and then adding the
resulting equations, one gets:

dTy AT, g d(T) dTy
kt— kS —= k© Lk
T PGy | + » dy Cay
Ym Ym H
d(T d7,
ket D el | gy s =0 (16)
dy P dy Ty

where the excess quantity is defined using Eq. 2. The two terms in brackets vanish. Indeed,

by construction, the macroscopic model is sought for such that it is equal to the mesoscopic

solution within each homogeneous regions and in particular at the boundaries of these regions,
i.e., at —H and H. This yields:
d7;

3%

dT,
keff p
dy

P dy 7=(1—¢>) Ss a7

Ym

Ym
The difference between the heat fluxes at the interface is equal to a source of heat, (1 —¢)* S,
concentrated at the interface. Since the porosity varies smoothly in the transition region and
because the two asymptotic values of the heat source are different (0 in the free fluid region
and (1 — ¢,)Ss in the homogeneous porous region), the value of this excess quantity will
depend on the location of the interface (see Fig. 3). This excess heat source appears not
because there is a particular phenomenon at the interface, but because the heat source is not
correctly modeled by the macroscopic model. Indeed, in the macroscopic model, only the two
asymptotic values of the heat source are represented, whereas in the mesoscopic model, all
the local variations (within the interfacial region) of the heat source are accounted for. When
there is no heat source, Sg = 0, nothing is forgotten by the macroscopic model compared
to the mesoscopic one and a continuous conductive heat flux is obtained as in Jamet and
Chandesris (2008). The heat flux jump condition (17) is such that the overall source of heat
of the mesoscopic model is taken into account in the macroscopic model.

3.2.2 Temperature Jump Condition
To determine the second boundary condition, we use the mesoscopic heat flux ¢ (y) that satis-

fies Eq. 13 and is therefore known at the mesoscopic scale (see Sect. 3.1.2). The mesoscopic
conduction equation can be rewritten in the following way:

d(T
() _ 4O (18)
dy ket (y)
Following the same reasoning as in the previous section, one gets:
T, 7| 7" 19
f y;[ P Yu a (@) ( )

This temperature jump condition involves the excess quantity of the flux g times the thermal
resistance 1/k°. These two quantities are not represented in the same way in the interfacial
transition region at the meso- and macroscopic scales. The excess quantity represents the
overall difference. Assigned to the interface via the temperature jump condition, it ensures
that the overall transfer (flux time thermal resistance) is conserved in the up-scaling process.

Equations 17 and 19 show that for a heat conduction problem in a fluid/porous domain,
the origin of the heat flux jump at the interface is related to the excess of the heat source at
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the interface and the origin of the temperature jump is related to the excess of the flux time
the thermal resistance.

3.2.3 Excess Quantities and Location of the Interface

The jump conditions (17) and (19) involve excess quantities. Given the definition (2) of an
excess quantity, it can be shown that its value depends on the position of yy; when W~ £ W+,
To show this, a particular position yy, is introduced for which the sum of the two integral
terms of equation (2) is zero:

Yy +00
/ W (y)—¥7)dy +/ () —vH)dy=0 (20)
PSS vy

This particular position yy is named the center of gravity of the profile of . Using this
definition, one gets, when W~ and W™ are constants:

V= (yy —ym) (YT — ) 2

which shows that, when W™~ and W™ are constants, the excess quantity depends linearly on
ym. Thus, when W™ # Wt which is the case in our problem, the value of the excess quan-
tities does depend on the location of the interface inside the transition region. Nevertheless,
this dependence of the excess quantity and thus of the jump coefficient, on the location of
the interface, compensates the fact that the macroscopic problems are different in the two
homogeneous regions (¥~ # W), Thus, changing the interface location modifies the zone
of influence of a given macroscopic model. Finally, the value of the excess quantity is such
that, whatever the location of the discontinuous interface inside the transition region, the
overall amount of a given quantity is conserved at the macroscopic scale via the two asymp-
totic values of this quantity in the homogeneous regions and via the excess quantity assigned
at the interface.

To illustrate this point, we compute the macroscopic solutions obtained using the bound-
ary conditions (17) and (19) for three different values of yys. First, we determine the value
of the two excess quantities, for different locations of the interface using the profiles of ¢, g,
and k°f determined in Sect. 3.1.2. For the heat source (1 — @)* S, since its asymptotic values
are constant, its value depends linearly on y,,. For the other excess quantity, its dependence
on yy is quadratic because the asymptotes of ¢ in the homogeneous regions are not con-
stant, but linear in y. The values of the excess quantities are presented in Table 1. In Fig. 6,
the macroscopic temperatures obtained for different positions of the interface are presented
along with the mesoscopic temperature profile. This figure shows that the macroscopic prob-
lem is indeed equivalent to the mesoscopic one, whatever the position of the interface in the
interfacial region. Furthermore, the mesoscopic and the macroscopic solutions differ only,
as expected, in the transition region (Fig. 6b).

Table 1 Value of the excess e
quantities for different positions ym/H (1 — ¢)** Ss (q ke )
of the interface

0.1 —0.583 —0.0994
0 —0.139 —0.0279
—0.1 0.306 0.0337
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Fig. 6 a Comparison of the mesoscopic and macroscopic solutions for different positions of the interface.
b Zoom on the interfacial region

4 Laminar Flow over a Porous Medium

In this section, we consider the case of a Poiseuille flow over a porous medium. The objec-
tive is not to detail the steps of our two-step up-scaling analysis which has been carried out
in Chandesris and Jamet (2006, 2007). However, we aim at illustrating why this problem
is more complex than the heat conduction problem and requires the use of another method
for the second up-scaling step. Furthermore, our objective is to show how the results of this
multi-scale analysis can be used to study the empirical slip boundary condition of Beavers
and Joseph.

4.1 First Up-scaling Step

For a Poiseuille flow over a porous medium, the problem is governed at the microscopic scale
by the Stokes equations on the fluid phase:

V-u=0 (22)
uViu="Vp (23)
u=0 onA4; (24)

The mesoscopic governing equations are obtained by applying the phase average operator
to the Egs. 22 and 23 (Whitaker 1999, Chap. 4). After this averaging procedure, closure
relations must be determined to model the terms that involve microscopic quantities.

In the homogeneous porous region, the volume-averaged momentum equation reduces to
the Darcy—Brinkman equation:

22wy =V () +uK;' - () (25)
bp
where K, is the permeability tensor in the homogeneous porous region.

In the homogeneous free fluid region, assuming that ryp < L, we have the approximations
(u) ~ uand ( p)f ~ p. Furthermore, since there is no solid and since the porosity is equal to
1, the volume-averaged momentum equation reduces to the Stokes equation (23).

In the interfacial transition region the problem is much more complex. As explained in
Sect. 2.1, we postulate the form of the closed equation and deduce the associated effective
properties by filtering microscopic numerical simulations. Thus, we assume that there exists
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Fig. 7 Non-dimensional 1.5 . . .
porosity and permeability profiles ¢

obtained by filtering microscopic ! ) Q—
simulations 1 f’

0.5

a permeability tensor K(x) such that the interfacial transition region is well represented by
the following equation:

I

¢(x)
Here, we have assumed that the effective viscosity is well represented by using peff = /.
The permeability tensor can be deduced from microscopic simulations using the same filter-
ing process and filter as those presented in Sect. 3.1.2 (see Breugem et al. (2004) for a detailed
example). In the subsequent section, the porosity and permeability profiles obtained for a
porous medium made of cubes, where the size and the distance between two cubes is equal,
will be used (see Chandesris and Jamet (2007) for a detailed description of the geometry).
These profiles are presented in Fig. 7. The porosity and the inverse of the permeability are

constant in the two homogeneous regions and vary smoothly across the interfacial transition
region.

Vi =V(p) +u K@ () (26)

4.2 Second Up-scaling Step

The objective of this section is to show how to derive the jump conditions that must be applied
at the macroscopic scale for the case of a Poiseuille flow over a porous medium, i.e., when
the problem is one-dimensional.

4.2.1 Surface-Excess Theory

As shown in Sect. 3.2.1 the jump conditions are obtained by integrating in the entire domain,
the difference between the mesoscopic and the macroscopic governing equations. Following

the same reasoning, one gets:
dﬁf ex dp ¢ “
= — — 27
¢ o M\ % (ue) 27

dﬁp
ME I

dy

Vir Y
where iif, and, iip, are the volume-averaged velocity solution of the macroscopic problem in
the free fluid region, and in the homogeneous porous region. Thus, this method shows that
the stress jump condition depends on two excess quantities: the pressure surface-excess force
¢*dp/dx and the friction surface-excess force u(¢p/K (u))¢*. These surface-excess forces
represent the amount of the force that is not correctly modeled by the macroscopic model
compared to the mesoscopic one in the interfacial transition region.

However, the stress jump condition (27) is not closed. Indeed, the friction surface-excess
force w (¢p/K (u))** depends on an unknown mesoscopic variable (). Thus, contrary to

@ Springer



432 M. Chandesris, D. Jamet

the heat conduction problem, for the Poiseuille flow problem, the surface-excess theory is
not sufficient to derive a closed jump condition. To overcome this difficulty, we have used
in Chandesris and Jamet (2006) another method, the matched asymptotic expansion method,
which also allows to perform this second up-scaling step. This method, which is more tech-
nical, allows to derive a closed form for the friction surface-excess force, i.e., the friction
surface-excess force is expressed using only macroscopic variables.

4.2.2 Matched Asymptotic Expansion Method

The idea of this method is to solve analytically, using an asymptotic expansion in &, the equa-
tions governing the problem at the mesoscopic scale. This asymptotic expansion is feasible
because a small parameter, ¢ = §/H, is present in the mesoscopic equation (26) through
the porosity and permeability profiles. As ¢ tends to zero, the transition region tends to
a discontinuous surface. Thus, the result obtained using the asymptotic expansion is both
an approximated solution at a given order of the mesoscopic problem and the solution of
a macroscopic problem with a discontinuous interface for which the boundary conditions
can be made explicit. Thus, this method allows to derive analytically, and at a given order,
the boundary conditions of the macroscopic problem such that the macroscopic problem is
indeed equivalent to the mesoscopic one.

The technical steps of the method are presented in Chandesris and Jamet (2006). At order
0 in ¢, the velocity (”)(0) and the stress are continuous at the interface. At order 1 in ¢, one
gets:

figl s — dply = (28)

dits dity o dp (¢ )“A
—| L == tu( u ‘ 29
128 dy y;l dy - ¢ dx 14 % ( )(0) - (29)

where u = (u) o t¢ (u) ) is the macroscopic velocity, solution of the mesoscopic problem

at order 1 and
¢ exA ¢
(g) = (v — ym) (K’;) (30)

where y, is the center of gravity of the friction force. The determination of y 4 is not direct
and requires to perform one numerical simulation at the mesoscopic scale (Chandesris and
Jamet 2007). However, we have shown that its value is independent of H and thus, this quan-
tity is indeed representative of the momentum transfer in the interfacial transition region.
Finally, comparing Eqs. 27 and 29, one can see that the method of matched asymptotic
expansion allows to obtain a closed form for the friction surface-excess force.

For the porosity and permeability profiles presented in Fig. 7, y5/H = —0.094 and
vf/H = —0.11. The macroscopic velocity obtained for different positions of the interface
is presented along with the mesoscopic velocity profile in Fig. 8a. The corresponding values
of the two excess quantities are presented in Table 2. Figure 8a shows that the macroscopic
solutions obtained using the stress jump condition (29) agree very well with the mesoscopic
solution in the two homogeneous regions, whatever the position of the interface in the tran-
sition region (provided that the variation of the jump parameters with the interface position,
which are known analytically, is accounted for).

Thus, different methods can be used to perform this second up-scaling step. The surface-
excess theory is easy to carry on. However, the obtained boundary conditions, which are
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Fig. 8 a Comparison of the mesoscopic and macroscopic solutions for different positions of the interface
vy /H=0; —0.1; —0.2. b Zoom on the interfacial region

Table 2 Value of the excess

ex exA
quantities for different positions ym/H ¢ Kp (9/K)
of the interface
0 234 x 1072 —8.25 x 1072
—0.1 —0.156 x 1072 —0.75 x 1072
—0.2 —2.66 x 1072 6.75 x 1072

expressed through excess quantities, are not always closed. The method of matched asymp-
totic expansion is more technical, but allows to obtain closed expressions for the boundary
conditions.

4.3 Beavers and Joseph’s Slip Boundary Condition

In the previous section, we have shown that the boundary conditions (28) and (29) account for
the momentum transfer at the fluid/porous interface when the Darcy—Brinkman model, with
constant porosity and permeability, is used in the homogeneous porous region. The objective
of this section is to go further, to use the Darcy model in the porous region and determine the
conditions under which the well-known semi-empirical Beavers and Joseph’s slip boundary
condition can be applied.

To derive this boundary condition, we start from the results obtained in the previous sec-
tion. Because of the exponential decay of the velocity in the porous domain, it is possible
to relate diip/ dy|yA_4 to the velocity at the interface ug = itp(yp ). Thus, the jump condition

(29) becomes:
_ [P, ¢ dp ()"
L= [ = Uo)+ £ +(K) <u>(o)\m 31)

The same macroscopic solutions are obtained in the homogeneous regions, i.e., outside the
interfacial region, by solving (i) the Darcy—Brinkman model and the Stokes model connected
with the boundary conditions (28) and (29) or (ii) the Darcy model and the Stokes model
connected with the boundary condition (31). This result is illustrated in Fig. 9, where the
mesoscopic velocity is presented along with the two macroscopic results.

The main drawback of the boundary condition (31) is that it depends on the macroscopic
unknown <”>(0)- However, if the discontinuous interface is located in the transition region,

dy
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0.1
0.02 i
0.05
0 -
0
1 1 1 1 1 1
-1 -0.5 0 0.5 1 -0.3 -0.2 -0.1 0
ylH ylH
(@ (b)

Fig.9 a Comparison of the Darcy and Darcy—Brinkman (DB) models (yy; =y f¢)- b Zoom on the interfacial
region

such that the friction surface-excess force vanishes, i.e., for yyy = y, one has (¢/K )eXA =0

and gets:
ex
d
= 2 Gy — Uy + 2 (32)
vh Kp n dx

The above boundary condition is a generalization of the Beavers and Joseph’s relation (1)
in the sense that it involves a second term that depends on the pressure gradient. Since
Up = —(Kp/u)(dp/dx), relation (32) can be rewritten in the following form:

dig
dy

dﬁf ¢p d)ex
= 2 g —Up (1 - ——— 33
dy lyy VKo [MB D( v‘i’PKp)] o

If ¢¢* = 0, the relation (1) is recovered with o = \/@ . Thus, the above analysis shows
that the Beavers and Joseph’s semi-empirical relation (1) is exactly recovered when (i) the
two surface-excess forces vanish exactly at the same location, i.e., yy = yy and (ii) the
discontinuous interface is located such that yyy = yy = y .

The solution of the Stokes equation (23) with a no slip condition at the upper wall,
u(H) = 0, and the boundary condition (33) at y = y,, is given by:

-U,
u() = 572 (0= 0> + 20K (Véy + 6 /VEp ) 5 = yun)
p
Pp
tu( 1+ |20 (34)
with
o2 +20( /P, + ¢/ /K

up = 22 (v ) (35)

2 l+0.¢,

and 0 = (Ht — ym)// Kp. When ¢ = 0, we recover the Beavers and Joseph (1967)
solution with & = /.

The parameter o involves a macroscopic length (H™ — yj) and a length characteristic
of the size of the solid inclusion /K. However, since the size of the filter ry is also directly
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related to both the size of the solid inclusion and is of the order of the size of the transition
region, the length /ITP is of the order of the interfacial transition region. Thus, the parameter
o is characteristic of the ratio of the size of the free fluid region over the size of the transition
region. The size of the free fluid region is generally larger than the size of the transition
region. Typical values of ¢ are in the range [5—120] (Beavers and Joseph 1967). Equation 35
shows that for such values of o, the slip velocity is much larger than the Darcy velocity
(ug/Up ~ o/ \/E ) and the latter can thus be neglected in the boundary conditions (1) and
(33). Thus, if ¢*/,/¢,Kp is smaller than or of order 1, which is usually the case, and if
the values of o are relatively large, the boundary conditions (33) and (1) reduce to the same
relation:

dig

= |—= 36
dy ug (36)

i

and are therefore equivalent. Finally, for large values of o, the only constraint to recover the
Beavers and Joseph’s semi-empirical relation (1) is to locate the discontinuous interface such
that the friction surface-excess force vanishes, i.e., at yy; = y ;. Equation 36 also shows that
the ratio ug/ \/Ey (where p is the shear rate diig/dy) studied by James and Davis (2001),
Tachie et al. (2004), and others is simply given by 1/ \/(bT, . But, as for the Beavers and
Joseph’s semi-empirical relation, this simple relation is valid only for the particular position
of the interface yy = yy.

This analysis is illustrated on the particular porous geometry studied in the previous sec-
tion. At the mesoscopic scale, we solve Eq. 26 with the permeability and porosity profiles
presented in Fig. 7 (y,/H = —0.11 and y,/H = —0.094) for different heights H™ of the
free fluid channel. At the macroscopic scale, the Darcy and the Stokes models are connected
using relation (33) at yys = y ;. The solution is given by Eq. 34. The macroscopic solution is
presented along with the mesoscopic solution in Fig. 10a. The macroscopic solution obtained
using the Beavers and Joseph’s semi-empirical relation (1) with o = \/dTp and yy =y
is also presented for comparison. The velocity profile in the free fluid region is very well
predicted by the Beavers and Joseph’s relation (1). As expected and since o is relatively large
in this case (o ~ [40-90]), the results obtained using the boundary conditions (33) and (1) do
not differ. These boundary conditions actually reduce to the boundary condition (36), which
is sufficient to predict the velocity profile in the free fluid region.

0.15 + 0.15F
0.1 0.1
0.05 0.05
0 0
1 1 1 1 1 1 1 1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
y/H ylH
(a) (b)
Fig. 10 Mesoscopic and macroscopic results. a The interface is located in yyy = yg = —0.11. b The

interface is arbitrary located in yp; /H = —0.05
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In Fig. 10b, we present the results obtained using relation (1) with o = \/@ when the
interface is not located at yy; = y, but at another arbitrary location inside the interfacial
transition region. The velocity profile is not correctly predicted. This result illustrates the
sensitivity of the Beavers and Joseph’s relation (1) to the precise location of the interface
inside the transition region. For the same value of the parameter «, the velocity in the free
fluid region is very well predicted when yy; =y, (Fig. 10a) and not at all for another position
of yys (Fig. 10b). This shows that, the precise location of the interface inside the transition
region is a crucial point to accurately predict the velocity profile in the free fluid region while
using the Beavers and Joseph’s semi-empirical boundary condition (1). A discussion on the
value of o looses some of its sense without a discussion on the location of the discontinuous
interface as illustrated in Fig. 10.

Finally, it can be noticed that if one takes o = \/qT , one cannot recover the experimental
values proposed by Beavers and Joseph, which go up to 4. However, this analysis shows that
a crucial point in the analysis is the knowledge of the exact location of the interface inside
the transition region (Fig. 10). In the Beavers and Joseph’s experiments, this difficulty is
materialized through the choice of the location of the adjustable divider plate in the transition
region which allows to measure the mass flow rate in the free fluid region. Since this location
is not precisely known for the Beavers and Joseph’s experiments, it hampers the analysis of
the results that they obtained. This difficulty however disappears with the new experimental
techniques used, for example, in Saleh et al. (1993), Tachie et al. (2004), and Goharzadeh
et al. (2005). Indeed, in these experiments, there is no divider plate. The velocity profiles are
measured in the whole domain using particle image velocimetry. An interesting point would
be to compare these more details experiments to the results presented in this paper.

5 Conclusion

In this work, we analyze the jump conditions that must be imposed at a fluid/porous interface
in order to account for the transfers that occur in the interfacial region. This general analysis
is based on two up-scaling steps. The first one allows to obtain a continuous description
of the problem. The transfers in the interfacial region are modeled via effective properties
that vary in the interfacial transition regions. In this study, these effective properties are
determined by filtering numerical simulations at the pore scale. Then, a second up-scaling
step is performed. The physical features, which are not (or not correctly) accounted for
by the macroscopic model, compared to the mesoscopic one, in the interfacial region, are
assigned to the interface through jump conditions that involve excess quantities. These excess
quantities depend on the interface location. But this dependence compensates the fact that
the macroscopic models are different in the two homogeneous regions and that changing
the interface location modifies the zone of influence of a given macroscopic model. For
both the heat conduction and the Poiseuille flow problems, the macroscopic solutions are
equivalent to their corresponding mesoscopic solutions whatever the position of the interface
inside the transition region.

Finally, the Beavers and Joseph’s slip boundary condition is analyzed. We show that by
studying the transfers at a fluid/porous interface using a multi-scale approach, it is possible to
recover the Beavers and Joseph’s slip boundary condition. In this study, the conditions under
which the Beavers and Joseph’s relation is recovered are made explicit: (i) the transfers at
the mesoscopic scale must satisfy Eq. 10 and (ii) the value of o must be sufficiently large
or the pressure and viscous surface-excess forces must vanish exactly at the same location.
In both cases, o = \/@ and the interface must be located at yy; =y, which is the center
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of gravity of the friction surface-excess force. Thus, the difficulty is not to determine «, but
to determine y . This can be done using our multi-scale approach. Furthermore, the sensi-
tivity of the Beavers and Joseph’s relation on the precise location of the interface inside the
transition region has been illustrated.
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