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Overview



1 History and Structure

DuMuX Introduction
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DuMuX is a DUNE Module



• Developed by scientists in Aachen, Bergen, Berlin, Dresden, Freiburg, Heidelberg, 

Münster, Stuttgart and Warwick.

• Separation of data structures and algorithms by abstract interfaces.

• Efficient implementation using generic programming techniques.

• Reuse of existing FE packages with a large body of functionality.

• Current stable release: 2.6 (March 2018).
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The DUNE Framework

DUNE core modules: 

dune-common: basic classes

dune-geometry: geometric entities

dune-grid: abstract grid/mesh interface. 

dune-istl: iterative solver template library

dune-localfunctions: finite element shape 

functions



DuMuX: DUNE for Multi-{Phase, Component, Scale, Physics, ...} flow and 

transport in porous media. (current stable release 2.12, in transition to 3.0)

• Goal: sustainable and consistent framework for the implementation and 

application of model concepts and constitutive relations.

• Successfully applied to gas storage scenarios, radioactive waste disposal, 

remediation problems, transport of therapeutic agents, fractured porous 

media, and subsurface-atmosphere coupling.
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Overview

DuMuX modules: 

dumux-lecture: example applications for lectures offered by LH2 in Stuttgart.

dumux-pub: accompany a publication with all code and data to reproduce the results.

dumux-devel, dumux-appl…: current unpublished development and ongoing research
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History

• Meanwhile developed by more than 20 PhD students and post docs at LH2.

• 1/2007: development starts.

• 1/7/2009: release 1.0. 

• 9/2010: Split into stable part and development part.

• 12/2010: Anonymous read access to the SVN trunk of the stable part.

• 25/2/2011: release 2.0, ..., 31/10/2017: release 2.12, 3.0-alpha.

• 28/9/2015: Transition from Subversion to Git.

• More than 1000 ``real'' and unique release downloads.

• More than 100 peer-reviewed publications and PhD theses.
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Evolution of C++ Files
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Evolution of Code Lines
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1p, 1p2c

Richards

2p, 2p1c, 2p2c, 

2pdfm, 2pminc, 

2pnc, 2pncmin, 

co2

3p, 3p3c, 

3pwateroil

mpnc

Available Models

Porous Medium Flow

Fully Implicit

1p

2p, 2p2c

Sequential

stokes

navierstokes

rans (0-Eq, 2-Eq)

Free Flow

Fully Implicit

el1p2c

el2p

elastic

Geomechanics

Fully Implicit

Boundary: Darcy-

Darcy, Stokes-

Darcy

Facet: Darcy-

Darcy 1/2d-2/3d

Embedded: 

Darcy-Darcy 1/2d-

3d

Multidomain

Fully Implicit

+ non-isothermal
+ compositional

+ non-isothermal
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Discretization:

• Box method

• Cell-centered FV 

with TPFA or 

MPFA

Grid Adaptivity 

Parallel 

Further Capabilities and Characteristics

Porous Medium Flow

Fully Implicit

Discretization:

• Cell-centered FV 

with TPFA, 

MPFA-L, MPFA-

0 (2p), MFD (2p)

Grid Adaptivity 

Parallel 

Sequential

Discretization:

• Staggered grid 

(MAC) method

Free Flow

Fully Implicit

Discretization:

• Cell-centered 

method for flow

• Box for 

displacement

Parallel 

Geomechanics

Fully Implicit

Discretization:

• Stokes-Darcy: 

cell-centered for 

PM flow, 

staggered for 

free flow

• …

Multidomain

Fully Implicit



• Mailing lists of DUNE (dune@dune-project.org)  and DuMuX (dumux@listserv.uni-stuttgart.de)

• Get GitLab accounts (non-anonymous) for better access

• Dune GitLab (https://gitlab.dune-project.org/core)

• DuMuX GitLab (https://git.iws.uni-stuttgart.de/dumux-repositories/dumux)

• GitLab Issue Tracker (https://git.iws.uni-stuttgart.de/dumux-repositories/dumux/issues)

• Doxygen code documentation of

• DUNE (http://dune-project.org/doc/doxygen.html)

• DuMuX (http://dumux.org/doxygen-stable/html-2.12/)

• DuMuX Handbook (http://dumux.org/documentation.php)

• Further information  http://dumux.org/
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Where to get help? Where to report problems? How to stay updated?

What is DuMuX?

mailto:dune@dune-project.org
mailto:dumux@listserv.uni-stuttgart.de
https://gitlab.dune-project.org/core
https://git.iws.uni-stuttgart.de/dumux-repositories/dumux
https://git.iws.uni-stuttgart.de/dumux-repositories/dumux/issues


2 Available Models

DuMuX Introduction
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1p – 1 phase

Models



• Standard Darcy approach for the conservation of momentum

• Balance equation

• Primary variable: p 
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1p – 1 phase

Models
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1p2c – 1 phase 2 components

Models



• Continuity equation (including Darcy‘s law)

• Component balance

• Primary variables: 

7/18/2018University of Stuttgart 18

1p2c – 1 phase 2 components

Models
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2p – 2 phases

Models



• Momentum conservation via standard multiphase Darcy approach:

• Continuity equation with Darcy‘s law included

• Constitutive relations:

• Primary variables: 
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2p – 2 phases

Models
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2p2c – 2 phases 2 components

Models



• 2 phases each composed of 2 components

• Standard multiphase Darcy for the conservation of momentum

• Balance equation for each component:

• Constitutive relations:

• Primary variables: 
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2p2c – 2 phases 2 components

Models
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2pnc – 2 phases n components

Models



• 2 phases each composed of up to n components

• Standard multiphase Darcy for the conservation of momentum

• Balance equation for each component:

• Constitutive relations:

• Primary variables: 
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2pnc – 2 phases n components

Models
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2pncmin – 2 phases n components with mineralization

Models



• 2 phases each composed of up to n components

• Standard multiphase Darcy for the conservation of momentum

• Balance equation for each component:

• Mass balance for solid/mineral phase : 
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2pncmin – 2 phases n components with mineralization

Models
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3p3c – 3 phases 3 components

Models



• 3 phases each composed of up to three components

• standard multiphase Darcy for the conservation of momentum

• Balance equation

• auxiliary conditions:                                        ,  

• Primary variables:     
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3p3c – 3 phases 3 components

Models
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Non-Isothermal

Models



• Assuming local thermal equilibrium  one energy conservation equation for the porous 

solid matrix and the fluids: 

With the specific internal energy of the phase     : 

• Primary variable : T

• can currently be used on top of most porous media models
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Non-Isothermal

Models



• Primary variable : p, v, X, T, …
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Free Flow – (Reynolds-averaged) Navier-Stokes (1pncni)

Models



3 Discretization Schemes

DuMuX Introduction



• Discretize model domain with FE mesh 

creating elements Ek

• Construct secondary FV mesh  Box Bi

• FE mesh divides Box into 

subcontrolvolumes (scv’s) bi
k inside Ek

• Subcontrolvolumefaces (scvf’s) are 

needed between scv’s bi
k and bj

k with 

|eij
k | as the length of the scvf

 unstructured grid (from FE method)

 mass conservative (FV method)
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Box method

Spatial Discretization Schemes



• Use elements of the grid as control volumes

• Discrete values are determined at the 

element/control volume center i

• Mass/energy fluxes are evaluated at the 

integration point xij (at the mid of cvf’s)

 two-point flux approximation (TPFA)

 robust and mass conservative

 Should be applied for k-orthogonal grids only

 Extension to general grids with MPFA
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Cell Centered Finite Volume Method (CC)

Spatial Discretization Schemes



• Use elements of the grid as control volumes for 

the Scalar quantities

• Control volumes for the velocity components are 

shifted half a cell in each direction

• TPFA: Mass/energy fluxes at mid of cvf’s, 

momentum fluxes at mid of staggered-cvf’s

• robust and mass conservative

 Should be applied for k-orthogonal grids only
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Staggered Grid or Marker-and-Cell Method (MAC)

Spatial Discretization Schemes



4 Model Components

DuMuX Introduction



• Two of the biggest challenges in porous media simulation: highly heterogeneous 

distribution of parameters and the complex nonlinear material laws.

• Difficult to achieve modularity due to the strong interconnection of these properties.

• Try to achieve a modular structure by a separation into the following parts:

• Fluid states

• Fluid systems

• Constraint solvers

• Components

• Fluid-matrix interactions

• Spatial parameters

• See the course block starting Thursday at 11:00 h.
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Constitutive equations (material laws, fluidsystems, …)

DuMuX Material



• A DuMuX problem

• implements a specific model scenario

• configures a model for the scenario using

• properties (see the course block starting Thursday at 9:00 h)

• and parameters (see the course block starting today at 17:00 h)

• defines boundary conditions

• defines initial conditions

• defines source/sink terms  

• The spatial parameters

• define spatial parameters of the porous material (permeability, porosity, material laws)

• See the course block starting today at 13:30 h.
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Configuring and running a simulation scenario

DuMuX Problem



• All equations are considered non-linear  Newton scheme
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The basic ingredient for solving nonlinear PDEs

Newton´s method

• Where the residual R has the general form

• with storage S, fluxes F, sources Q and solution vector U

• Computing the Jacobian  Numeric differentiation (deflect U, recompute R)

7/18/2018



• …LocalResidual, …localresidual.hh

• {Model}VolumeVariables, {model}/volumevariables.hh

• …FluxVariables, …fluxvariables.hh

• …PrimaryVariables, possibly customized in terms of a formulation, {model}/model.hh

• …ModelTraits, {model}/model.hh

• …Indices, {model}/model.hh

• {Model}VtkOutputFields, {model}/vtkoutputfields.hh
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Necessary ingredients

Model components

7/18/2018



• The local residual computes the residual per element for all associated degree of 

freedoms (located at element center (CCFV) / vertex positions (Box))

• Every model uses a …localresidual.hh with a …LocalResidual class, e.g., 

ImmiscibleLocalResidual, CompositionalLocalResidual

• The LocalResidual class consists of (most importantly):

• a computeStorage method computing S(U)

• a computeFlux method computing F(U) ∙ n using the FluxVariables class

• a computeSource method computing Q(U) forwarding to the problem‘s source / 

sourceAtPos methods
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The local residual

Model components

7/18/2018



• Where to get the variables needed to compute storage S(U), flux F(U) ∙ n and source

Q(U)?

• Every model has a volumevariables.hh with a {Model}VolumeVariables class

• Volume variables are all variables defined in a control volume (e.g. pressure, density, 

porosity, saturation, viscosity, …)

• The VolumeVariables class

• takes primary variables of the current Newton step (e.g. pressure p)

• computes and gathers all secondary variables (e.g. density                )

• The ElementVolumeVariables class is a collection of all VolumeVariables

needed to compute the local residual of an element (stencil)
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The volume variables: From primary to secondary variables 

Model components

7/18/2018



• A  FluxVariables class object exists for every (sub) control volume face

• Helper class to compute volume fluxes f(u) using the respective discretization scheme

• Box method – fluxes over inner sub control volume boundaries

• CCFV method – fluxes over intersections (facets / codim 1 entities) with neighboring 

elements, i.e. (sub) control volume boundaries
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The flux variables: Flux over the control volume boundaries

Model components

7/18/2018



• A model has the same number of primary variables and equations (numEq)

• Therefore the same container is used (PrimaryVariables)

• It is usually a Dune::Fieldvector<Scalar, numEq> class (array with some

calculus abilities)

• Primary variables of models with a primary-variable switch also have a state

• (Scalar is the type used for all scalar values, it defaults to double but may be

changed to compute with types of higher / lower precision)
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Primary variables and equations

Model components
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• Each model provides its …ModelTraits, a struct containing

using Indices = …;

static constexpr int numEq() {…}

static constexpr int numPhases() {…}

static constexpr int numComponents() {…}

…

static constexpr bool enableAdvection() {…}

static constexpr bool enableMolecularDiffusion() {…}

static constexpr bool enableEnergyBalance() {…}

…

static constexpr … priVarFormulation() {…}

• To be used as, e.g., ModelTraits::numEq().
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The Model Traits

Model components

7/18/2018



• A model has an Indices class providing named access to the array‘s entries for

• primary variables (e.g. setting Dirichlet boundary conditions per PV)

Example:    

• PrimaryVariables values(0.0); // initialize to zero

• values[pressureIdx] = 1e5; // pressure in Pa

• equations (e.g. setting source terms for certain equations)

Example:

• PrimaryVariables sources(0.0); // initialize to zero

• sources[conti0EqIdx] = -1e-5; // mass balance sink term in kg/(s*m³)
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Indices: organizing primary variables and equations

Model components
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• Each model provides …VtkOutputFields, a class where the default output fields are 

set by employing a VtkOutputModule vtk via, e.g.,

vtk.addVolumeVariable( [](const auto& v)

{ return v.saturation(FS::phase1Idx); },

"S_n“ );

• In addition to the default fields, custom fields can be added to the output by defining a 

function

void addFieldsToWriter(VtkWriter& vtk)

in the problem class.

University of Stuttgart 47

Vtk Output Fields

Model components

7/18/2018



5 Simulation flow

DuMuX Introduction
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Simulation Flow

University of Stuttgart 

Initialize

foreach time step

prepare update

foreach NEWTON iteration

foreach element

- calculate element residual vector and Jacobian matrix

- assemble into global residual vector and Jacobian matrix

endfor

solve linear system

update solution

check for NEWTON convergence

endfor

- adapt time step size, possibly redo with smaller step size

- write result

endfor

finalize
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Simulation Flow: see course block starting today at 13:30 h

University of Stuttgart 

Initialize

foreach time step

prepare update

foreach NEWTON iteration

foreach element

- calculate element residual vector and Jacobian matrix

- assemble into global residual vector and Jacobian matrix

endfor

solve linear system

update solution

check for NEWTON convergence

endfor

- adapt time step size, possibly redo with smaller step size

- write result

endfor

finalize



e-mail

phone +49 (0) 711 685-

fax +49 (0) 711 685-

University of Stuttgart

Thank you!

69162

60430

Institute for Modelling Hydraulic 

and Environmental Systems

dumux@listserv.uni-stuttgart.de

Pfaffenwaldring 61, 70569 Stuttgart

Institute for Modelling Hydraulic and Environmental Systems

http://dumux.org/ 

https://dune-project.org/


