exercise_basic_2pni.cc 8.31 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
21
 * \brief The solution main file for the two-phase porousmediumflow problem of exercise-basic
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
 */
#include <config.h>

#include <ctime>
#include <iostream>

#include <dune/common/parallel/mpihelper.hh>
#include <dune/common/timer.hh>
#include <dune/grid/io/file/dgfparser/dgfexception.hh>
#include <dune/grid/io/file/vtk.hh>

#include <dumux/common/properties.hh>
#include <dumux/common/parameters.hh>
#include <dumux/common/dumuxmessage.hh>
#include <dumux/common/defaultusagemessage.hh>

#include <dumux/linear/amgbackend.hh>
#include <dumux/nonlinear/newtonsolver.hh>

#include <dumux/assembly/fvassembler.hh>
#include <dumux/assembly/diffmethod.hh>

44
#include <dumux/discretization/method.hh>
45
46
47

#include <dumux/io/vtkoutputmodule.hh>
#include <dumux/io/grid/gridmanager.hh>
48
#include <dumux/io/loadsolution.hh>
49
50
51
52
53
54
55
56
57
58
59
60

// The problem file, where setup-specific boundary and initial conditions are defined.
#include "injection2pniproblem.hh"

////////////////////////
// the main function
////////////////////////
int main(int argc, char** argv) try
{
    using namespace Dumux;

    // define the type tag for this problem
61
    using TypeTag = Properties::TTag::Injection2pNICCTypeTag;
62
63
64
65
66
67
68
69
70
71
72
73

    // initialize MPI, finalize is done automatically on exit
    const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv);

    // print dumux start message
    if (mpiHelper.rank() == 0)
        DumuxMessage::print(/*firstCall=*/true);

    // parse command line arguments and input file
    Parameters::init(argc, argv);

    // try to create a grid (from the given grid file or the input file)
74
    GridManager<GetPropType<TypeTag, Properties::Grid>> gridManager;
75
76
77
78
79
80
81
82
83
84
    gridManager.init();

    ////////////////////////////////////////////////////////////
    // run instationary non-linear problem on this grid
    ////////////////////////////////////////////////////////////

    // we compute on the leaf grid view
    const auto& leafGridView = gridManager.grid().leafGridView();

    // create the finite volume grid geometry
85
    using FVGridGeometry = GetPropType<TypeTag, Properties::FVGridGeometry>;
86
87
88
89
    auto fvGridGeometry = std::make_shared<FVGridGeometry>(leafGridView);
    fvGridGeometry->update();

    // the problem (initial and boundary conditions)
90
    using Problem = GetPropType<TypeTag, Properties::Problem>;
91
92
    auto problem = std::make_shared<Problem>(fvGridGeometry);

93
94
95
96
    // check if we are about to restart a previously interrupted simulation
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    Scalar restartTime = getParam<Scalar>("Restart.Time", 0);

97
    // the solution vector
98
    using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
99
    SolutionVector x(fvGridGeometry->numDofs());
100
101
102
103
104
105
106
107
108
109
110
111
    if (restartTime > 0)
    {
        using IOFields = GetPropType<TypeTag, Properties::IOFields>;
        using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
        using ModelTraits = GetPropType<TypeTag, Properties::ModelTraits>;
        using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
        const auto fileName = getParam<std::string>("Restart.File");
        const auto pvName = createPVNameFunction<IOFields, PrimaryVariables, ModelTraits, FluidSystem>();
        loadSolution(x, fileName, pvName, *fvGridGeometry);
    }
    else
        problem->applyInitialSolution(x);
112
113
114
    auto xOld = x;

    // the grid variables
115
    using GridVariables = GetPropType<TypeTag, Properties::GridVariables>;
116
    auto gridVariables = std::make_shared<GridVariables>(problem, fvGridGeometry);
117
    gridVariables->init(x);
118
119

    // get some time loop parameters
120
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
121
122
123
124
125
    const auto tEnd = getParam<Scalar>("TimeLoop.TEnd");
    const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize");
    auto dt = getParam<Scalar>("TimeLoop.DtInitial");

    // intialize the vtk output module
126
    using IOFields = GetPropType<TypeTag, Properties::IOFields>;
127
128
129
    VtkOutputModule<GridVariables, SolutionVector> vtkWriter(*gridVariables, x, problem->name());
    using VelocityOutput = GetPropType<TypeTag, Properties::VelocityOutput>;
    vtkWriter.addVelocityOutput(std::make_shared<VelocityOutput>(*gridVariables));
130
    IOFields::initOutputModule(vtkWriter); //!< Add model specific output fields
131
    vtkWriter.write(restartTime);
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

    // instantiate time loop
    auto timeLoop = std::make_shared<TimeLoop<Scalar>>(0.0, dt, tEnd);
    timeLoop->setMaxTimeStepSize(maxDt);

    // the assembler with time loop for instationary problem
    using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>;
    auto assembler = std::make_shared<Assembler>(problem, fvGridGeometry, gridVariables, timeLoop);

    // the linear solver
    using LinearSolver = AMGBackend<TypeTag>;
    auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->dofMapper());

    // the non-linear solver
    using NewtonSolver = Dumux::NewtonSolver<Assembler, LinearSolver>;
    NewtonSolver nonLinearSolver(assembler, linearSolver);

    // time loop
    timeLoop->start();
    while (!timeLoop->finished())
    {
        // set previous solution for storage evaluations
        assembler->setPreviousSolution(xOld);

        //set time in problem (is used in time-dependent Neumann boundary condition)
        problem->setTime(timeLoop->time()+timeLoop->timeStepSize());

        // solve the non-linear system with time step control
        nonLinearSolver.solve(x, *timeLoop);

        // make the new solution the old solution
        xOld = x;
        gridVariables->advanceTimeStep();

        // advance to the time loop to the next step
        timeLoop->advanceTimeStep();

        // report statistics of this time step
        timeLoop->reportTimeStep();

        // set new dt as suggested by the newton solver
        timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize()));

        // output to vtk
        vtkWriter.write(timeLoop->time());
    }

    timeLoop->finalize(leafGridView.comm());

    ////////////////////////////////////////////////////////////
    // finalize, print dumux message to say goodbye
    ////////////////////////////////////////////////////////////

    // print dumux end message
    if (mpiHelper.rank() == 0)
    {
        Parameters::print();
        DumuxMessage::print(/*firstCall=*/false);
    }

    return 0;
} // end main
catch (Dumux::ParameterException &e)
{
    std::cerr << std::endl << e << " ---> Abort!" << std::endl;
    return 1;
}
catch (Dune::DGFException & e)
{
    std::cerr << "DGF exception thrown (" << e <<
                 "). Most likely, the DGF file name is wrong "
                 "or the DGF file is corrupted, "
                 "e.g. missing hash at end of file or wrong number (dimensions) of entries."
                 << " ---> Abort!" << std::endl;
    return 2;
}
catch (Dune::Exception &e)
{
    std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl;
    return 3;
}
catch (...)
{
    std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl;
    return 4;
}