2pproblem.hh 10.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
 * \brief Tutorial problem for a fully coupled twophase box model.
 */
#ifndef DUMUX_EXERCISE_THREE_A_PROBLEM_HH
#define DUMUX_EXERCISE_THREE_A_PROBLEM_HH

// The numerical model
#include <dumux/porousmediumflow/2p/model.hh>

30
// The box discretization
31
32
#include <dumux/discretization/box/properties.hh>

33
// The grid managers
34
35
36
37
38
39
40
41
#if HAVE_DUNE_ALUGRID
#include <dune/alugrid/grid.hh>
#elif HAVE_UG
#include <dune/grid/uggrid.hh>
#else
#include <dune/grid/yaspgrid.hh>
#endif

42
// The porous media base problem
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#include <dumux/porousmediumflow/problem.hh>

// Spatially dependent parameters
#include "spatialparams.hh"

// The water component
#include <dumux/material/components/tabulatedcomponent.hh>
#include <dumux/material/components/h2o.hh>

// The components that will be created in this exercise
#include "components/myincompressiblecomponent.hh"
// #include "components/mycompressiblecomponent.hh"

// We will only have liquid phases here
#include <dumux/material/fluidsystems/1pliquid.hh>

// The two-phase immiscible fluid system
#include <dumux/material/fluidsystems/2pimmiscible.hh>

namespace Dumux{
// Forward declaration of the problem class
template <class TypeTag> class ExerciseThreeProblemTwoP;

namespace Properties {
// Create a new type tag for the problem
NEW_TYPE_TAG(ExerciseThreeTwoPTypeTag, INHERITS_FROM(TwoP));
NEW_TYPE_TAG(ExerciseThreeBoxTwoPTypeTag, INHERITS_FROM(BoxModel, ExerciseThreeTwoPTypeTag));

// Set the "Problem" property
SET_TYPE_PROP(ExerciseThreeTwoPTypeTag, Problem, ExerciseThreeProblemTwoP<TypeTag>);

// Set the spatial parameters
SET_TYPE_PROP(ExerciseThreeTwoPTypeTag, SpatialParams,
              ExerciseThreeSpatialParams<typename GET_PROP_TYPE(TypeTag, FVGridGeometry),
                                         typename GET_PROP_TYPE(TypeTag, Scalar)>);

79
// Set grid to be used
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#if HAVE_DUNE_ALUGRID
SET_TYPE_PROP(ExerciseThreeTwoPTypeTag, Grid, Dune::ALUGrid</*dim=*/2, 2, Dune::cube, Dune::nonconforming>);
#elif HAVE_UG
SET_TYPE_PROP(ExerciseThreeTwoPTypeTag, Grid, Dune::UGGrid<2>);
#else
SET_TYPE_PROP(ExerciseThreeTwoPTypeTag, Grid, Dune::YaspGrid<2>);
#endif // HAVE_DUNE_ALUGRID

// we use the immiscible fluid system here
SET_PROP(ExerciseThreeTwoPTypeTag, FluidSystem)
{
private:
    using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar);
    using TabulatedH2O = Components::TabulatedComponent<Components::H2O<Scalar>>;
94
    using LiquidWater = typename FluidSystems::OnePLiquid<Scalar, TabulatedH2O>;
95
96
97
98
    /*!
     * Uncomment first line and comment second line for using the incompressible component
     * Uncomment second line and comment first line for using the compressible component
     */
99
100
    using LiquidMyComponent = typename FluidSystems::OnePLiquid<Scalar, MyIncompressibleComponent<Scalar> >;
    // using LiquidMyComponent = typename FluidSystems::OnePLiquid<Scalar, MyCompressibleComponent<Scalar> >;
101
102

public:
103
    using type = typename FluidSystems::TwoPImmiscible<Scalar, LiquidWater, LiquidMyComponent>;
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
};

}

/*!
 * \ingroup TwoPBoxModel
 * \brief  Tutorial problem for a fully coupled twophase box model.
 */
template <class TypeTag>
class ExerciseThreeProblemTwoP : public PorousMediumFlowProblem<TypeTag>
{
    using ParentType = PorousMediumFlowProblem<TypeTag>;
    using GridView = typename GET_PROP_TYPE(TypeTag, GridView);
    using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar);

    // Grid dimension
    enum { dim = GridView::dimension,
           dimWorld = GridView::dimensionworld
    };
    using Element = typename GridView::template Codim<0>::Entity;
    using GlobalPosition = typename Element::Geometry::GlobalCoordinate;

    // Dumux specific types
    using Indices = typename GET_PROP_TYPE(TypeTag, ModelTraits)::Indices;
    using PrimaryVariables = typename GET_PROP_TYPE(TypeTag, PrimaryVariables);
    using BoundaryTypes = typename GET_PROP_TYPE(TypeTag, BoundaryTypes);
    using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry);
    using FVElementGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry)::LocalView;
    using FluidSystem = typename GET_PROP_TYPE(TypeTag, FluidSystem);

    enum {
        waterPressureIdx = Indices::pressureIdx,
        naplSaturationIdx = Indices::saturationIdx,
        contiWEqIdx = Indices::conti0EqIdx + FluidSystem::comp0Idx, // water transport equation index
        contiNEqIdx = Indices::conti0EqIdx + FluidSystem::comp1Idx // napl transport equation index
    };

public:
    ExerciseThreeProblemTwoP(std::shared_ptr<const FVGridGeometry> fvGridGeometry)
    : ParentType(fvGridGeometry)
144
    , eps_(3e-6)
145
146
    {
#if !(HAVE_DUNE_ALUGRID || HAVE_UG)
147
        std::cout << "If you want to use simplices instead of cubes, install and use dune-ALUGrid or UGGrid." << std::endl;
148
149
#endif // !(HAVE_DUNE_ALUGRID || HAVE_UG)

150
151
152
153
154
155
156
157
158
159
160
        // initialize the tables for the water properties
        std::cout << "Initializing the tables for the water properties" << std::endl;
        Components::TabulatedComponent<Components::H2O<Scalar>>::init(/*tempMin=*/273.15,
                                                                      /*tempMax=*/623.15,
                                                                      /*numTemp=*/100,
                                                                      /*pMin=*/0.0,
                                                                      /*pMax=*/20e6,
                                                                      /*numP=*/200);

        // set the depth of the bottom of the reservoir
        depthBOR_ = this->fvGridGeometry().bBoxMax()[dimWorld-1];
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    }

    /*!
     * \name Problem parameters
     */
    // \{

    /*!
     * \brief Returns the temperature \f$ K \f$
     */
    Scalar temperature() const
    { return 283.15; }

     /*!
     * \name Boundary conditions
     */
    // \{

    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param bcTypes The boundary types for the conservation equations
     * \param globalPos The position for which the bc type should be evaluated
     */
    BoundaryTypes boundaryTypesAtPos(const GlobalPosition &globalPos) const
    {
         BoundaryTypes bcTypes;

        if (globalPos[0] < eps_ || globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_)
           bcTypes.setAllDirichlet();
        else
            bcTypes.setAllNeumann();

        return bcTypes;
    }

    /*!
     * \brief Evaluates the boundary conditions for a Dirichlet
     *        boundary segment
     *
     * \param globalPos The global position
     */
204
    PrimaryVariables dirichletAtPos(const GlobalPosition& globalPos) const
205
    {
206
207
        // use the initial values as Dirichlet values
        return initialAtPos(globalPos);
208
209
210
211
212
213
214
215
216
217
218
219
220
    }

    /*!
     * \brief Evaluate the boundary conditions for a neumann
     *        boundary segment.
     *
     * \param values Stores the Neumann values for the conservation equations in
     *               \f$ [ \textnormal{unit of conserved quantity} / (m^(dim-1) \cdot s )] \f$
     * \param globalPos The position of the integration point of the boundary segment.
     *
     * For this method, the \a values parameter stores the mass flux
     * in normal direction of each phase. Negative values mean influx.
     */
221
    PrimaryVariables neumannAtPos(const GlobalPosition& globalPos) const
222
223
224
225
226
    {
        // initialize values to zero, i.e. no-flow Neumann boundary conditions
        PrimaryVariables values(0.0);

        Scalar up = this->fvGridGeometry().bBoxMax()[dimWorld-1];
227
228
229
230

        // influx of oil (30 g/m/s) over a segment of the top boundary
        if (globalPos[dimWorld-1] > up - eps_ && globalPos[0] > 20 && globalPos[0] < 40)
        {
231
232
            values[contiWEqIdx] = 0;
            values[contiNEqIdx] = -3e-2;
233
234
235
        }
        else
        {
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
            // no-flow on the remaining Neumann-boundaries.
            values[contiWEqIdx] = 0;
            values[contiNEqIdx] = 0;
        }

        return values;
    }

    // \}

    /*!
     * \name Volume terms
     */
    // \{

    /*!
     * \brief Evaluate the initial value for a control volume.
     *
     * \param globalPos The position for which the initial condition should be evaluated
     *
     * For this method, the \a values parameter stores primary
     * variables.
     */
259
    PrimaryVariables initialAtPos(const GlobalPosition& globalPos) const
260
261
262
263

    {
        PrimaryVariables values(0.0);

264
265
266
        // use hydrostatic pressure distribution with 2 bar at the top and zero saturation
        values[waterPressureIdx] = 200.0e3 + 9.81*1000*(depthBOR_ - globalPos[dimWorld-1]);
        values[naplSaturationIdx] = 0.0;
267
268
269
270
271
272
273
274
275
276
277
278

        return values;
    }
    // \}

    /*!
     * \brief Returns the source term
     *
     * \param values Stores the source values for the conservation equations in
     *               \f$ [ \textnormal{unit of primary variable} / (m^\textrm{dim} \cdot s )] \f$
     * \param globalPos The global position
     */
279
    PrimaryVariables sourceAtPos(const GlobalPosition& globalPos) const
280
    {
281
        // we define no source term here
282
283
284
285
286
        PrimaryVariables values(0.0);
        return values;
    }

private:
287
288
    Scalar eps_; //! small epsilon value
    Scalar depthBOR_; //! depth at the bottom of the reservoir
289
290
291
292
};
}

#endif