2pproblem.hh 11.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
 * \brief Tutorial problem for a fully coupled twophase box model.
 */
24
25
#ifndef DUMUX_EXERCISE_FLUIDSYSTEM_A_PROBLEM_HH
#define DUMUX_EXERCISE_FLUIDSYSTEM_A_PROBLEM_HH
26

27
28
29
// The grid manager
#include <dune/grid/yaspgrid.hh>

30
31
32
// The numerical model
#include <dumux/porousmediumflow/2p/model.hh>

33
// The box discretization
34
#include <dumux/discretization/box.hh>
35

36
// The porous media base problem
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#include <dumux/porousmediumflow/problem.hh>

// Spatially dependent parameters
#include "spatialparams.hh"

// The water component
#include <dumux/material/components/tabulatedcomponent.hh>
#include <dumux/material/components/h2o.hh>

// The components that will be created in this exercise
#include "components/myincompressiblecomponent.hh"
// #include "components/mycompressiblecomponent.hh"

// We will only have liquid phases here
#include <dumux/material/fluidsystems/1pliquid.hh>

// The two-phase immiscible fluid system
#include <dumux/material/fluidsystems/2pimmiscible.hh>

56
57
58
// The interface to create plots during simulation
#include <dumux/io/gnuplotinterface.hh>

59
60
namespace Dumux{
// Forward declaration of the problem class
61
template <class TypeTag> class ExerciseFluidsystemProblemTwoP;
62
63
64

namespace Properties {
// Create a new type tag for the problem
65
66
// Create new type tags
namespace TTag {
Felix Weinhardt's avatar
Felix Weinhardt committed
67
struct ExerciseFluidsystemTwoP { using InheritsFrom = std::tuple<BoxModel, TwoP>; };
68
} // end namespace TTag
69
70

// Set the "Problem" property
71
template<class TypeTag>
Felix Weinhardt's avatar
Felix Weinhardt committed
72
struct Problem<TypeTag, TTag::ExerciseFluidsystemTwoP> { using type = ExerciseFluidsystemProblemTwoP<TypeTag>; };
73
74

// Set the spatial parameters
Felix Weinhardt's avatar
Felix Weinhardt committed
75
SET_TYPE_PROP(ExerciseFluidsystemTwoP, SpatialParams,
76
77
              ExerciseFluidsystemSpatialParams<GetPropType<TypeTag, Properties::FVGridGeometry>,
                                         GetPropType<TypeTag, Properties::Scalar>>);
78

79
// Set grid to be used
80
template<class TypeTag>
Felix Weinhardt's avatar
Felix Weinhardt committed
81
struct Grid<TypeTag, TTag::ExerciseFluidsystemTwoP> { using type = Dune::YaspGrid<2>; };
82
83

// we use the immiscible fluid system here
84
template<class TypeTag>
Felix Weinhardt's avatar
Felix Weinhardt committed
85
struct FluidSystem<TypeTag, TTag::ExerciseFluidsystemTwoP>
86
87
{
private:
88
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
89
    using TabulatedH2O = Components::TabulatedComponent<Components::H2O<Scalar>>;
90
    using LiquidWaterPhase = typename FluidSystems::OnePLiquid<Scalar, TabulatedH2O>;
91
92
93
94
    /*!
     * Uncomment first line and comment second line for using the incompressible component
     * Uncomment second line and comment first line for using the compressible component
     */
95
    using LiquidMyComponentPhase = typename FluidSystems::OnePLiquid<Scalar, MyIncompressibleComponent<Scalar> >;
Ned Coltman's avatar
Ned Coltman committed
96
    // using LiquidMyComponentPhase = typename FluidSystems::OnePLiquid<Scalar, MyCompressibleComponent<Scalar> >;
97
98

public:
99
    using type = typename FluidSystems::TwoPImmiscible<Scalar, LiquidWaterPhase, LiquidMyComponentPhase>;
100
101
102
103
104
105
106
107
108
};

}

/*!
 * \ingroup TwoPBoxModel
 * \brief  Tutorial problem for a fully coupled twophase box model.
 */
template <class TypeTag>
109
class ExerciseFluidsystemProblemTwoP : public PorousMediumFlowProblem<TypeTag>
110
111
{
    using ParentType = PorousMediumFlowProblem<TypeTag>;
112
113
    using GridView = GetPropType<TypeTag, Properties::GridView>;
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
114
115
116
117
118
119
120
121
122

    // Grid dimension
    enum { dim = GridView::dimension,
           dimWorld = GridView::dimensionworld
    };
    using Element = typename GridView::template Codim<0>::Entity;
    using GlobalPosition = typename Element::Geometry::GlobalCoordinate;

    // Dumux specific types
123
124
125
126
127
128
129
    using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices;
    using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
    using BoundaryTypes = GetPropType<TypeTag, Properties::BoundaryTypes>;
    using FVGridGeometry = GetPropType<TypeTag, Properties::FVGridGeometry>;
    using FVElementGeometry = typename GetPropType<TypeTag, Properties::FVGridGeometry>::LocalView;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
    using FluidState = GetPropType<TypeTag, Properties::FluidState>;
130
131
132
133
134
135
136
137
138

    enum {
        waterPressureIdx = Indices::pressureIdx,
        naplSaturationIdx = Indices::saturationIdx,
        contiWEqIdx = Indices::conti0EqIdx + FluidSystem::comp0Idx, // water transport equation index
        contiNEqIdx = Indices::conti0EqIdx + FluidSystem::comp1Idx // napl transport equation index
    };

public:
139
    ExerciseFluidsystemProblemTwoP(std::shared_ptr<const FVGridGeometry> fvGridGeometry)
140
    : ParentType(fvGridGeometry)
141
    , eps_(3e-6)
142
143
    {

144
145
146
147
148
149
150
151
152
153
        // initialize the tables for the water properties
        Components::TabulatedComponent<Components::H2O<Scalar>>::init(/*tempMin=*/273.15,
                                                                      /*tempMax=*/623.15,
                                                                      /*numTemp=*/100,
                                                                      /*pMin=*/0.0,
                                                                      /*pMax=*/20e6,
                                                                      /*numP=*/200);

        // set the depth of the bottom of the reservoir
        depthBOR_ = this->fvGridGeometry().bBoxMax()[dimWorld-1];
154
155

        // plot density over pressure of the phase consisting of your component
156
157
        if(getParam<bool>("Output.PlotDensity"))
            plotDensity_();
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
    }

    /*!
     * \name Problem parameters
     */
    // \{

    /*!
     * \brief Returns the temperature \f$ K \f$
     */
    Scalar temperature() const
    { return 283.15; }

     /*!
     * \name Boundary conditions
     */
    // \{

    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param globalPos The position for which the bc type should be evaluated
     */
    BoundaryTypes boundaryTypesAtPos(const GlobalPosition &globalPos) const
    {
         BoundaryTypes bcTypes;

        if (globalPos[0] < eps_ || globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_)
           bcTypes.setAllDirichlet();
        else
            bcTypes.setAllNeumann();

        return bcTypes;
    }

    /*!
     * \brief Evaluates the boundary conditions for a Dirichlet
     *        boundary segment
     *
     * \param globalPos The global position
     */
200
    PrimaryVariables dirichletAtPos(const GlobalPosition& globalPos) const
201
    {
202
203
        // use the initial values as Dirichlet values
        return initialAtPos(globalPos);
204
205
206
207
208
209
210
211
212
213
214
    }

    /*!
     * \brief Evaluate the boundary conditions for a neumann
     *        boundary segment.
     *
     * \param globalPos The position of the integration point of the boundary segment.
     *
     * For this method, the \a values parameter stores the mass flux
     * in normal direction of each phase. Negative values mean influx.
     */
215
    PrimaryVariables neumannAtPos(const GlobalPosition& globalPos) const
216
217
218
219
220
    {
        // initialize values to zero, i.e. no-flow Neumann boundary conditions
        PrimaryVariables values(0.0);

        Scalar up = this->fvGridGeometry().bBoxMax()[dimWorld-1];
221
222
223
224

        // influx of oil (30 g/m/s) over a segment of the top boundary
        if (globalPos[dimWorld-1] > up - eps_ && globalPos[0] > 20 && globalPos[0] < 40)
        {
225
226
            values[contiWEqIdx] = 0;
            values[contiNEqIdx] = -3e-2;
227
228
229
        }
        else
        {
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
            // no-flow on the remaining Neumann-boundaries.
            values[contiWEqIdx] = 0;
            values[contiNEqIdx] = 0;
        }

        return values;
    }

    // \}

    /*!
     * \name Volume terms
     */
    // \{

    /*!
     * \brief Evaluate the initial value for a control volume.
     *
     * \param globalPos The position for which the initial condition should be evaluated
     *
     * For this method, the \a values parameter stores primary
     * variables.
     */
253
    PrimaryVariables initialAtPos(const GlobalPosition& globalPos) const
254
255
256
257

    {
        PrimaryVariables values(0.0);

258
259
260
        // use hydrostatic pressure distribution with 2 bar at the top and zero saturation
        values[waterPressureIdx] = 200.0e3 + 9.81*1000*(depthBOR_ - globalPos[dimWorld-1]);
        values[naplSaturationIdx] = 0.0;
261
262
263
264
265
266
267
268
269
270

        return values;
    }
    // \}

    /*!
     * \brief Returns the source term
     *
     * \param globalPos The global position
     */
271
    PrimaryVariables sourceAtPos(const GlobalPosition& globalPos) const
272
    {
273
        // we define no source term here
274
275
276
277
278
        PrimaryVariables values(0.0);
        return values;
    }

private:
279
280
    void plotDensity_()
    {
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
        FluidState fluidState;
        fluidState.setTemperature(temperature());
        int numberOfPoints = 100;
        Scalar xMin = 1e4;
        Scalar xMax = 1e7;
        Scalar spacing = std::pow((xMax/xMin), 1.0/(numberOfPoints-1));
        std::vector<double> x(numberOfPoints);
        std::vector<double> y(numberOfPoints);
        for (int i=0; i<numberOfPoints; ++i)
            x[i] = xMin*std::pow(spacing,i);
        for (int i=0; i<numberOfPoints; ++i)
        {
            fluidState.setPressure(FluidSystem::phase1Idx, x[i]);
            y[i] = FluidSystem::density(fluidState, FluidSystem::phase1Idx);
        }
296
        gnuplot_.resetPlot();
297
        gnuplot_.setXRange(xMin, xMax);
298
        gnuplot_.setOption("set logscale x 10");
299
        gnuplot_.setOption("set key left top");
300
301
302
        gnuplot_.setYRange(1440, 1480);
        gnuplot_.setXlabel("pressure [Pa]");
        gnuplot_.setYlabel("density [kg/m^3]");
303
304
        gnuplot_.addDataSetToPlot(x, y, "YourComponentPhase_density.dat", "w l t 'Phase consisting of your component'");
        gnuplot_.plot("YourComponentPhase_density");
305
306
    }

307
308
    Scalar eps_; //! small epsilon value
    Scalar depthBOR_; //! depth at the bottom of the reservoir
309
    Dumux::GnuplotInterface<double> gnuplot_; //! collects data for plotting
310
311
312
313
};
}

#endif