freeflowsubproblem.hh 15.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
19
20
21
22
/*!
 * \file
 * \brief The free-flow sub problem
 */
23
24
25
26
27
#ifndef DUMUX_FREEFLOW1P2C_SUBPROBLEM_HH
#define DUMUX_FREEFLOW1P2C_SUBPROBLEM_HH

#include <dune/grid/yaspgrid.hh>

28
#include <dumux/material/fluidsystems/1padapter.hh>
29
30
31
32
33
#include <dumux/material/fluidsystems/h2oair.hh>
#include <dumux/discretization/staggered/freeflow/properties.hh>

#if EXNUMBER >= 1
#include <dumux/freeflow/compositional/zeroeqncmodel.hh>
34
#include <dumux/freeflow/rans/problem.hh>
35
36
37
38
39
#else
#include <dumux/freeflow/compositional/navierstokesncmodel.hh>
#include <dumux/freeflow/navierstokes/problem.hh>
#endif

40
41
namespace Dumux {

42
43
44
template <class TypeTag>
class FreeFlowSubProblem;

45
46
namespace Properties {

47
48
// Create new type tags
namespace TTag {
49
#if EXNUMBER >= 1
50
struct StokesZeroEq { using InheritsFrom = std::tuple<ZeroEqNCNI, StaggeredFreeFlowModel>; };
51
#else
52
struct StokesZeroEq { using InheritsFrom = std::tuple<NavierStokesNCNI, StaggeredFreeFlowModel>; };
53
#endif
54
} // end namespace TTag
55
56

// Set the grid type
57
template<class TypeTag>
58
struct Grid<TypeTag, TTag::StokesZeroEq> { using type = Dune::YaspGrid<2, Dune::TensorProductCoordinates<GetPropType<TypeTag, Properties::Scalar>, 2> >; };
59

60
// The fluid system
61
template<class TypeTag>
62
struct FluidSystem<TypeTag, TTag::StokesZeroEq>
63
{
64
  using H2OAir = FluidSystems::H2OAir<GetPropType<TypeTag, Properties::Scalar>>;
65
66
67
  static constexpr auto phaseIdx = H2OAir::gasPhaseIdx; // simulate the air phase
  using type = FluidSystems::OnePAdapter<H2OAir, phaseIdx>;
};
68

69
template<class TypeTag>
70
struct ReplaceCompEqIdx<TypeTag, TTag::StokesZeroEq> { static constexpr int value = 3; };
71
72

// Use formulation based on mass fractions
73
template<class TypeTag>
74
struct UseMoles<TypeTag, TTag::StokesZeroEq> { static constexpr bool value = true; };
75
76

// Set the problem property
77
template<class TypeTag>
78
struct Problem<TypeTag, TTag::StokesZeroEq> { using type = Dumux::FreeFlowSubProblem<TypeTag> ; };
79
80

template<class TypeTag>
81
struct EnableFVGridGeometryCache<TypeTag, TTag::StokesZeroEq> { static constexpr bool value = true; };
82
template<class TypeTag>
83
struct EnableGridFluxVariablesCache<TypeTag, TTag::StokesZeroEq> { static constexpr bool value = true; };
84
template<class TypeTag>
85
struct EnableGridVolumeVariablesCache<TypeTag, TTag::StokesZeroEq> { static constexpr bool value = true; };
86
87
88
89
90
91
92
}

/*!
 * \brief The free-flow sub problem
 */
template <class TypeTag>
#if EXNUMBER >= 1
93
class FreeFlowSubProblem : public RANSProblem<TypeTag>
94
{
95
    using ParentType = RANSProblem<TypeTag>;
96
97
98
99
100
101
#else
class FreeFlowSubProblem : public NavierStokesProblem<TypeTag>
{
    using ParentType = NavierStokesProblem<TypeTag>;
#endif

102
103
104
105
106
    using GridView = GetPropType<TypeTag, Properties::GridView>;
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
    using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices;
    using BoundaryTypes = GetPropType<TypeTag, Properties::BoundaryTypes>;
107

108
    using FVGridGeometry = GetPropType<TypeTag, Properties::FVGridGeometry>;
109
110
111
    using FVElementGeometry = typename FVGridGeometry::LocalView;
    using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace;
    using Element = typename GridView::template Codim<0>::Entity;
112
113
114
    using ElementVolumeVariables = typename GetPropType<TypeTag, Properties::GridVolumeVariables>::LocalView;
    using ElementFaceVariables = typename GetPropType<TypeTag, Properties::GridFaceVariables>::LocalView;
    using FluidState = GetPropType<TypeTag, Properties::FluidState>;
115
116
117

    using GlobalPosition = typename Element::Geometry::GlobalCoordinate;

118
119
    using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
    using NumEqVector = GetPropType<TypeTag, Properties::NumEqVector>;
120

121
    using CouplingManager = GetPropType<TypeTag, Properties::CouplingManager>;
122
123
124
125
    using TimeLoopPtr = std::shared_ptr<TimeLoop<Scalar>>;

    using DiffusionCoefficientAveragingType = typename StokesDarcyCouplingOptions::DiffusionCoefficientAveragingType;

126
    static constexpr bool useMoles = GetPropType<TypeTag, Properties::ModelTraits>::useMoles();
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

public:
    FreeFlowSubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry, std::shared_ptr<CouplingManager> couplingManager)
    : ParentType(fvGridGeometry, "Stokes"), eps_(1e-6), couplingManager_(couplingManager)
    {
        refVelocity_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.RefVelocity");
        refPressure_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.RefPressure");
        refMoleFrac_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.refMoleFrac");
        refTemperature_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.RefTemperature");

        diffCoeffAvgType_ = StokesDarcyCouplingOptions::stringToEnum(DiffusionCoefficientAveragingType{},
                                                                     getParamFromGroup<std::string>(this->paramGroup(), "Problem.InterfaceDiffusionCoefficientAvg"));
    }

   /*!
     * \name Problem parameters
     */
    // \{

   /*!
     * \brief Return the temperature within the domain in [K].
     */
    Scalar temperature() const
    { return refTemperature_; }

   /*!
     * \brief Return the sources within the domain.
     *
     * \param globalPos The global position
     */
    NumEqVector sourceAtPos(const GlobalPosition &globalPos) const
    { return NumEqVector(0.0); }

    // \}
   /*!
     * \name Boundary conditions
     */
    // \{

    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param element The finite element
     * \param scvf The sub control volume face
     */
    BoundaryTypes boundaryTypes(const Element& element,
                                const SubControlVolumeFace& scvf) const
    {
        BoundaryTypes values;

        const auto& globalPos = scvf.center();

        if (onLeftBoundary_(globalPos))
        {
            values.setDirichlet(Indices::velocityXIdx);
            values.setDirichlet(Indices::velocityYIdx);
184
            values.setDirichlet(Indices::conti0EqIdx + 1);
185
            values.setDirichlet(Indices::energyEqIdx);
186
187
188
189
190
191
192
193
        }

        if (onLowerBoundary_(globalPos))
        {
            values.setDirichlet(Indices::velocityXIdx);
            values.setDirichlet(Indices::velocityYIdx);
            values.setNeumann(Indices::conti0EqIdx);
            values.setNeumann(Indices::conti0EqIdx + 1);
194
            values.setNeumann(Indices::energyEqIdx);
195
196
197
198
199
200
201
202
203
204
205
        }

        if (onUpperBoundary_(globalPos))
        {
#if EXNUMBER >=2
            values.setAllSymmetry();
#else
            values.setDirichlet(Indices::velocityXIdx);
            values.setDirichlet(Indices::velocityYIdx);
            values.setNeumann(Indices::conti0EqIdx);
            values.setNeumann(Indices::conti0EqIdx + 1);
206
            values.setNeumann(Indices::energyEqIdx);
207
208
209
210
211
212
#endif
        }

        if (onRightBoundary_(globalPos))
        {
            values.setDirichlet(Indices::pressureIdx);
213
            values.setOutflow(Indices::conti0EqIdx + 1);
214
            values.setOutflow(Indices::energyEqIdx);
215
216
217
218
219
220
        }

        if (couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf))
        {
            values.setCouplingNeumann(Indices::conti0EqIdx);
            values.setCouplingNeumann(Indices::conti0EqIdx + 1);
221
            values.setCouplingNeumann(Indices::energyEqIdx);
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
            values.setCouplingNeumann(Indices::momentumYBalanceIdx);
            values.setBJS(Indices::momentumXBalanceIdx);
        }
        return values;
    }

    /*!
     * \brief Evaluate the boundary conditions for a Dirichlet control volume.
     *
     * \param element The element
     * \param scvf The subcontrolvolume face
     */
    PrimaryVariables dirichletAtPos(const GlobalPosition& pos) const
    {
        PrimaryVariables values(0.0);
        values = initialAtPos(pos);

        return values;
    }

    /*!
     * \brief Evaluate the boundary conditions for a Neumann control volume.
     *
     * \param element The element for which the Neumann boundary condition is set
     * \param fvGeomentry The fvGeometry
     * \param elemVolVars The element volume variables
     * \param elemFaceVars The element face variables
     * \param scvf The boundary sub control volume face
     */
    NumEqVector neumann(const Element& element,
                        const FVElementGeometry& fvGeometry,
                        const ElementVolumeVariables& elemVolVars,
                        const ElementFaceVariables& elemFaceVars,
                        const SubControlVolumeFace& scvf) const
    {
        PrimaryVariables values(0.0);
        if(couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf))
        {
260
            values[Indices::momentumYBalanceIdx] = couplingManager().couplingData().momentumCouplingCondition(element, fvGeometry, elemVolVars, elemFaceVars, scvf);
261

262
            const auto massFlux = couplingManager().couplingData().massCouplingCondition(element, fvGeometry, elemVolVars, elemFaceVars, scvf, diffCoeffAvgType_);
263
264
            values[Indices::conti0EqIdx] = massFlux[0];
            values[Indices::conti0EqIdx + 1] = massFlux[1];
265
            values[Indices::energyEqIdx] = couplingManager().couplingData().energyCouplingCondition(element, fvGeometry, elemVolVars, elemFaceVars, scvf, diffCoeffAvgType_);
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        }
        return values;
    }

    // \}

    /*!
     * \brief Set the coupling manager
     */
    void setCouplingManager(std::shared_ptr<CouplingManager> cm)
    { couplingManager_ = cm; }

    /*!
     * \brief Get the coupling manager
     */
    const CouplingManager& couplingManager() const
    { return *couplingManager_; }

#if EXNUMBER >= 2
285
    bool isOnWallAtPos(const GlobalPosition& globalPos) const
286
287
288
289
    {
        return (onLowerBoundary_(globalPos));
    }
#elif EXNUMBER >= 1
290
    bool isOnWallAtPos(const GlobalPosition& globalPos) const
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
    {
        return (onLowerBoundary_(globalPos) || onUpperBoundary_(globalPos));
    }
#endif

   /*!
     * \name Volume terms
     */
    // \{

   /*!
     * \brief Evaluate the initial value for a control volume.
     *
     * \param globalPos The global position
     */
    PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const
    {
        FluidState fluidState;
        updateFluidStateForBC_(fluidState, refTemperature(), refPressure(), refMoleFrac());

311
        const Scalar density = FluidSystem::density(fluidState, 0);
312
313
314

        PrimaryVariables values(0.0);
        values[Indices::pressureIdx] = refPressure() + density*this->gravity()[1]*(globalPos[1] - this->fvGridGeometry().bBoxMin()[1]);
315
        values[Indices::conti0EqIdx + 1] = refMoleFrac();
316
317
318
        values[Indices::velocityXIdx] = refVelocity();
        values[Indices::temperatureIdx] = refTemperature();

319
320
321
322
323
#if EXNUMBER >= 2
        if(onLowerBoundary_(globalPos))
            values[Indices::velocityXIdx] = 0.0;
#else
        if(onUpperBoundary_(globalPos) || onLowerBoundary_(globalPos))
324
            values[Indices::velocityXIdx] = 0.0;
325
#endif
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

        return values;
    }

    //! \brief Returns the reference velocity.
    const Scalar refVelocity() const
    { return refVelocity_ ;}

    //! \brief Returns the reference pressure.
    const Scalar refPressure() const
    { return refPressure_; }

    //! \brief Returns the reference mass fraction.
    const Scalar refMoleFrac() const
    { return refMoleFrac_; }

    //! \brief Returns the reference temperature.
    const Scalar refTemperature() const
    { return refTemperature_; }


    void setTimeLoop(TimeLoopPtr timeLoop)
    { timeLoop_ = timeLoop; }

    /*!
     * \brief Returns the intrinsic permeability of required as input parameter for the Beavers-Joseph-Saffman boundary condition
     */
353
    Scalar permeability(const Element& element, const SubControlVolumeFace& scvf) const
354
    {
355
        return couplingManager().problem(CouplingManager::darcyIdx).spatialParams().permeabilityAtPos(scvf.center());
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
    }

    /*!
     * \brief Returns the alpha value required as input parameter for the Beavers-Joseph-Saffman boundary condition
     */
    Scalar alphaBJ(const SubControlVolumeFace& scvf) const
    {
        return couplingManager().problem(CouplingManager::darcyIdx).spatialParams().beaversJosephCoeffAtPos(scvf.center());
    }

    // \}

private:
    bool onLeftBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[0] < this->fvGridGeometry().bBoxMin()[0] + eps_; }

    bool onRightBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_; }

    bool onLowerBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[1] < this->fvGridGeometry().bBoxMin()[1] + eps_; }

    bool onUpperBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[1] > this->fvGridGeometry().bBoxMax()[1] - eps_; }

    //! \brief updates the fluid state to obtain required quantities for IC/BC
    void updateFluidStateForBC_(FluidState& fluidState, const Scalar temperature,
                                const Scalar pressure, const Scalar moleFraction) const
    {
        fluidState.setTemperature(temperature);
386
387
388
389
        fluidState.setPressure(0, pressure);
        fluidState.setSaturation(0, 1.0);
        fluidState.setMoleFraction(0, 1, moleFraction);
        fluidState.setMoleFraction(0, 0, 1.0 - moleFraction);
390
391

        typename FluidSystem::ParameterCache paramCache;
392
        paramCache.updatePhase(fluidState, 0);
393

394
395
        const Scalar density = FluidSystem::density(fluidState, paramCache, 0);
        fluidState.setDensity(0, density);
396

397
398
        const Scalar molarDensity = FluidSystem::molarDensity(fluidState, paramCache, 0);
        fluidState.setMolarDensity(0, molarDensity);
399

400
401
        const Scalar enthalpy = FluidSystem::enthalpy(fluidState, paramCache, 0);
        fluidState.setEnthalpy(0, enthalpy);
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
    }

    // the height of the free-flow domain
    const Scalar height_() const
    { return this->fvGridGeometry().bBoxMax()[1] - this->fvGridGeometry().bBoxMin()[1]; }

    Scalar eps_;

    Scalar refVelocity_;
    Scalar refPressure_;
    Scalar refMoleFrac_;
    Scalar refTemperature_;

    TimeLoopPtr timeLoop_;

    std::shared_ptr<CouplingManager> couplingManager_;

    DiffusionCoefficientAveragingType diffCoeffAvgType_;
};
} //end namespace

#endif // DUMUX_STOKES1P2C_SUBPROBLEM_HH