main.cc 8.3 KB
Newer Older
Simon Scholz's avatar
Simon Scholz committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
 * \brief Exercise for the two-phase n-component bio mineralization CC model.
 */
#include <config.h>

#include <ctime>
#include <iostream>

#include <dune/common/parallel/mpihelper.hh>
#include <dune/common/timer.hh>
#include <dune/grid/io/file/dgfparser/dgfexception.hh>
#include <dune/grid/io/file/vtk.hh>
#include <dune/istl/io.hh>

#include <dumux/common/properties.hh>
#include <dumux/common/parameters.hh>
#include <dumux/common/dumuxmessage.hh>
#include <dumux/common/defaultusagemessage.hh>

#include <dumux/linear/amgbackend.hh>
41
#include <dumux/linear/linearsolvertraits.hh>
42
#include <dumux/nonlinear/newtonsolver.hh>
Simon Scholz's avatar
Simon Scholz committed
43
44
45
46

#include <dumux/assembly/fvassembler.hh>
#include <dumux/assembly/diffmethod.hh>

47
#include <dumux/discretization/method.hh>
Simon Scholz's avatar
Simon Scholz committed
48
49
50
51

#include <dumux/io/vtkoutputmodule.hh>
#include <dumux/io/grid/gridmanager.hh>

52
#include "properties.hh"
Simon Scholz's avatar
Simon Scholz committed
53
54
55
56
57
58
59
60
61

////////////////////////
// the main function
////////////////////////
int main(int argc, char** argv) try
{
    using namespace Dumux;

    // define the type tag for this problem
Felix Weinhardt's avatar
Felix Weinhardt committed
62
    using TypeTag = Properties::TTag::ExerciseFourBioMinCCTpfa;
Simon Scholz's avatar
Simon Scholz committed
63
64
65
66
67
68
69
70
71
72
73
74

    // initialize MPI, finalize is done automatically on exit
    const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv);

    // print dumux start message
    if (mpiHelper.rank() == 0)
        DumuxMessage::print(/*firstCall=*/true);

    // parse command line arguments and input file
    Parameters::init(argc, argv);

    // try to create a grid (from the given grid file or the input file)
75
    GridManager<GetPropType<TypeTag, Properties::Grid>> gridManager;
Simon Scholz's avatar
Simon Scholz committed
76
77
78
79
80
81
82
83
84
85
    gridManager.init();

    ////////////////////////////////////////////////////////////
    // run instationary non-linear problem on this grid
    ////////////////////////////////////////////////////////////

    // we compute on the leaf grid view
    const auto& leafGridView = gridManager.grid().leafGridView();

    // create the finite volume grid geometry
86
    using FVGridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
Simon Scholz's avatar
Simon Scholz committed
87
88
89
90
    auto fvGridGeometry = std::make_shared<FVGridGeometry>(leafGridView);
    fvGridGeometry->update();

    // the problem (initial and boundary conditions)
91
    using Problem = GetPropType<TypeTag, Properties::Problem>;
Simon Scholz's avatar
Simon Scholz committed
92
93
94
    auto problem = std::make_shared<Problem>(fvGridGeometry);

    // the solution vector
95
    using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
Simon Scholz's avatar
Simon Scholz committed
96
97
98
99
100
101
102
103
104
    SolutionVector x(fvGridGeometry->numDofs());
    problem->applyInitialSolution(x);
    auto xOld = x;

    // initialize the spatialParams separately to compute the referencePorosity and referencePermeability
    problem->spatialParams().computeReferencePorosity(*fvGridGeometry, x);
    problem->spatialParams().computeReferencePermeability(*fvGridGeometry, x);

    // the grid variables
105
    using GridVariables = GetPropType<TypeTag, Properties::GridVariables>;
Simon Scholz's avatar
Simon Scholz committed
106
    auto gridVariables = std::make_shared<GridVariables>(problem, fvGridGeometry);
107
    gridVariables->init(x);
Simon Scholz's avatar
Simon Scholz committed
108
109

    // get some time loop parameters
110
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
Simon Scholz's avatar
Simon Scholz committed
111
112
113
114
115
    const auto tEnd = getParam<Scalar>("TimeLoop.TEnd");
    const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize");
    auto dt = getParam<Scalar>("TimeLoop.DtInitial");

    // initialize the vtk output module
116
    using IOFields = GetPropType<TypeTag, Properties::IOFields>;
117
    VtkOutputModule<GridVariables, SolutionVector> vtkWriter(*gridVariables, x, problem->name());
118
    IOFields::initOutputModule(vtkWriter); //!< Add model specific output fields
Simon Scholz's avatar
Simon Scholz committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    //add specific output
    vtkWriter.addField(problem->getKxx(), "Kxx");
    vtkWriter.addField(problem->getKyy(), "Kyy");
    // update the output fields before write
    problem->updateVtkOutput(x);
    vtkWriter.write(0.0);

    // instantiate time loop
    auto timeLoop = std::make_shared<TimeLoop<Scalar>>(0.0, dt, tEnd);
    const auto injBioTime = getParam<Scalar>("Injection.InjBioTime")*86400;
    const auto maxDtCO2 = getParam<Scalar>("TimeLoop.MaxTimeStepSizeCO2");

    // the assembler with time loop for instationary problem
    using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>;
133
    auto assembler = std::make_shared<Assembler>(problem, fvGridGeometry, gridVariables, timeLoop, xOld);
Simon Scholz's avatar
Simon Scholz committed
134
135

    // the linear solver
136
    using LinearSolver = AMGBiCGSTABBackend<LinearSolverTraits<FVGridGeometry>>;
Simon Scholz's avatar
Simon Scholz committed
137
138
139
    auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->dofMapper());

    // the non-linear solver
140
    using NewtonSolver = NewtonSolver<Assembler, LinearSolver>;
Simon Scholz's avatar
Simon Scholz committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    NewtonSolver nonLinearSolver(assembler, linearSolver);

    // time loop
    timeLoop->start(); do
    {
        // set previous solution for storage evaluations
        assembler->setPreviousSolution(xOld);

        // solve the non-linear system with time step control
        nonLinearSolver.solve(x, *timeLoop);

        //reset MaxTimeStepSize for CO2 Injection
        bool injCO2 = injBioTime < timeLoop->time() +  timeLoop->timeStepSize();
        timeLoop->setMaxTimeStepSize( injCO2 ? maxDtCO2 : maxDt);

        //set time in problem (is used in time-dependent Neumann boundary condition)
        problem->setTime(timeLoop->time()+timeLoop->timeStepSize());

        // make the new solution the old solution
        xOld = x;
        gridVariables->advanceTimeStep();

        // advance to the time loop to the next step
        timeLoop->advanceTimeStep();

        // update the output fields before write
        problem->updateVtkOutput(x);

        // write vtk output
        if (timeLoop->timeStepIndex()==0 || injCO2 == false || timeLoop->timeStepIndex() || timeLoop->willBeFinished())
            vtkWriter.write(timeLoop->time());

        // report statistics of this time step
        timeLoop->reportTimeStep();

        // set new dt as suggested by newton controller
        timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize()));

    } while (!timeLoop->finished());

    timeLoop->finalize(leafGridView.comm());

    ////////////////////////////////////////////////////////////
    // finalize, print dumux message to say goodbye
    ////////////////////////////////////////////////////////////

    // print dumux end message
    if (mpiHelper.rank() == 0)
    {
        Parameters::print();
        DumuxMessage::print(/*firstCall=*/false);
    }

    return 0;
} // end main
catch (Dumux::ParameterException &e)
{
    std::cerr << std::endl << e << " ---> Abort!" << std::endl;
    return 1;
}
catch (Dune::DGFException & e)
{
    std::cerr << "DGF exception thrown (" << e <<
                 "). Most likely, the DGF file name is wrong "
                 "or the DGF file is corrupted, "
                 "e.g. missing hash at end of file or wrong number (dimensions) of entries."
                 << " ---> Abort!" << std::endl;
    return 2;
}
catch (Dune::Exception &e)
{
    std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl;
    return 3;
}
catch (...)
{
    std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl;
    return 4;
}