main.cc 11.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
 * \brief A test problem for the coupled Stokes/Darcy problem (1p)
 */
#include <config.h>

#include <ctime>
#include <iostream>
#include <fstream>

#include <dune/common/parallel/mpihelper.hh>
#include <dune/common/timer.hh>
#include <dune/istl/io.hh>

#include <dumux/common/properties.hh>
#include <dumux/common/parameters.hh>
#include <dumux/common/dumuxmessage.hh>
37
#include <dumux/common/partial.hh>
38
39
40
#include <dumux/linear/seqsolverbackend.hh>
#include <dumux/assembly/fvassembler.hh>
#include <dumux/assembly/diffmethod.hh>
41
#include <dumux/discretization/method.hh>
42
43
44
45
46
47
48
49
50
51
#include <dumux/io/vtkoutputmodule.hh>
#include <dumux/io/staggeredvtkoutputmodule.hh>
#include <dumux/io/grid/gridmanager.hh>

#include <dumux/multidomain/staggeredtraits.hh>
#include <dumux/multidomain/fvassembler.hh>
#include <dumux/multidomain/newtonsolver.hh>

#include <dumux/multidomain/boundary/stokesdarcy/couplingmanager.hh>

52
#include "properties.hh"
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

int main(int argc, char** argv) try
{
    using namespace Dumux;

    // initialize MPI, finalize is done automatically on exit
    const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv);

    // print dumux start message
    if (mpiHelper.rank() == 0)
        DumuxMessage::print(/*firstCall=*/true);

    // parse command line arguments and input file
    Parameters::init(argc, argv);

    // Define the sub problem type tags
69
70
    using StokesTypeTag = Properties::TTag::StokesNC;
    using DarcyTypeTag = Properties::TTag::DarcyOnePNC;
71
72
73

    // try to create a grid (from the given grid file or the input file)
    // for both sub-domains
74
    using DarcyGridManager = Dumux::GridManager<GetPropType<DarcyTypeTag, Properties::Grid>>;
75
76
77
    DarcyGridManager darcyGridManager;
    darcyGridManager.init("Darcy"); // pass parameter group

78
    using StokesGridManager = Dumux::GridManager<GetPropType<StokesTypeTag, Properties::Grid>>;
79
80
81
82
83
84
85
86
    StokesGridManager stokesGridManager;
    stokesGridManager.init("Stokes"); // pass parameter group

    // we compute on the leaf grid view
    const auto& darcyGridView = darcyGridManager.grid().leafGridView();
    const auto& stokesGridView = stokesGridManager.grid().leafGridView();

    // create the finite volume grid geometry
87
    using StokesFVGridGeometry = GetPropType<StokesTypeTag, Properties::GridGeometry>;
88
89
    auto stokesFvGridGeometry = std::make_shared<StokesFVGridGeometry>(stokesGridView);
    stokesFvGridGeometry->update();
90
    using DarcyFVGridGeometry = GetPropType<DarcyTypeTag, Properties::GridGeometry>;
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    auto darcyFvGridGeometry = std::make_shared<DarcyFVGridGeometry>(darcyGridView);
    darcyFvGridGeometry->update();

    using Traits = StaggeredMultiDomainTraits<StokesTypeTag, StokesTypeTag, DarcyTypeTag>;

    // the coupling manager
    using CouplingManager = StokesDarcyCouplingManager<Traits>;
    auto couplingManager = std::make_shared<CouplingManager>(stokesFvGridGeometry, darcyFvGridGeometry);

    // the indices
    constexpr auto stokesCellCenterIdx = CouplingManager::stokesCellCenterIdx;
    constexpr auto stokesFaceIdx = CouplingManager::stokesFaceIdx;
    constexpr auto darcyIdx = CouplingManager::darcyIdx;

    // the problem (initial and boundary conditions)
106
    using StokesProblem = GetPropType<StokesTypeTag, Properties::Problem>;
107
    auto stokesProblem = std::make_shared<StokesProblem>(stokesFvGridGeometry, couplingManager);
108
    using DarcyProblem = GetPropType<DarcyTypeTag, Properties::Problem>;
109
110
111
    auto darcyProblem = std::make_shared<DarcyProblem>(darcyFvGridGeometry, couplingManager);

    // initialize the fluidsystem (tabulation)
112
    GetPropType<StokesTypeTag, Properties::FluidSystem>::init();
113
114

    // get some time loop parameters
115
    using Scalar = GetPropType<StokesTypeTag, Properties::Scalar>;
116
117
118
119
120
    const auto tEnd = getParam<Scalar>("TimeLoop.TEnd");
    const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize");
    auto dt = getParam<Scalar>("TimeLoop.DtInitial");

    // instantiate time loop
121
    auto timeLoop = std::make_shared<CheckPointTimeLoop<Scalar>>(0, dt, tEnd);
122
123
124
125
126
127
128
129
130
131
    timeLoop->setMaxTimeStepSize(maxDt);
    stokesProblem->setTimeLoop(timeLoop);
    darcyProblem->setTimeLoop(timeLoop);

    // the solution vector
    Traits::SolutionVector sol;
    sol[stokesCellCenterIdx].resize(stokesFvGridGeometry->numCellCenterDofs());
    sol[stokesFaceIdx].resize(stokesFvGridGeometry->numFaceDofs());
    sol[darcyIdx].resize(darcyFvGridGeometry->numDofs());

132
    auto stokesSol = partial(sol, stokesFaceIdx, stokesCellCenterIdx);
133
134
135
136
137
138
139
140
141

    stokesProblem->applyInitialSolution(stokesSol);
    darcyProblem->applyInitialSolution(sol[darcyIdx]);

    auto solOld = sol;

    couplingManager->init(stokesProblem, darcyProblem, sol);

    // the grid variables
142
    using StokesGridVariables = GetPropType<StokesTypeTag, Properties::GridVariables>;
143
    auto stokesGridVariables = std::make_shared<StokesGridVariables>(stokesProblem, stokesFvGridGeometry);
144
145
    stokesGridVariables->init(stokesSol);
    using DarcyGridVariables = GetPropType<DarcyTypeTag, Properties::GridVariables>;
146
    auto darcyGridVariables = std::make_shared<DarcyGridVariables>(darcyProblem, darcyFvGridGeometry);
147
    darcyGridVariables->init(sol[darcyIdx]);
148
149
150
151
152

    // intialize the vtk output module
    const auto stokesName = getParam<std::string>("Problem.Name") + "_" + stokesProblem->name();
    const auto darcyName = getParam<std::string>("Problem.Name") + "_" + darcyProblem->name();

153
    StaggeredVtkOutputModule<StokesGridVariables, decltype(stokesSol)> stokesVtkWriter(*stokesGridVariables, stokesSol, stokesName);
154
    GetPropType<StokesTypeTag, Properties::IOFields>::initOutputModule(stokesVtkWriter);
155
156
    stokesVtkWriter.write(0.0);

157
158
159
160
    VtkOutputModule<DarcyGridVariables, GetPropType<DarcyTypeTag, Properties::SolutionVector>> darcyVtkWriter(*darcyGridVariables, sol[darcyIdx], darcyName);
    using DarcyVelocityOutput = GetPropType<DarcyTypeTag, Properties::VelocityOutput>;
    darcyVtkWriter.addVelocityOutput(std::make_shared<DarcyVelocityOutput>(*darcyGridVariables));
    GetPropType<DarcyTypeTag, Properties::IOFields>::initOutputModule(darcyVtkWriter);
161
162
163
164
165
166
167
168
    darcyVtkWriter.write(0.0);

    // intialize the subproblems
    darcyProblem->init(sol[darcyIdx], *darcyGridVariables);

    // the assembler with time loop for instationary problem
    using Assembler = MultiDomainFVAssembler<Traits, CouplingManager, DiffMethod::numeric>;
    auto assembler = std::make_shared<Assembler>(std::make_tuple(stokesProblem, stokesProblem, darcyProblem),
169
170
                                                 std::make_tuple(stokesFvGridGeometry->faceFVGridGeometryPtr(),
                                                                 stokesFvGridGeometry->cellCenterFVGridGeometryPtr(),
171
                                                                 darcyFvGridGeometry),
172
173
                                                 std::make_tuple(stokesGridVariables->faceGridVariablesPtr(),
                                                                 stokesGridVariables->cellCenterGridVariablesPtr(),
174
175
                                                                 darcyGridVariables),
                                                 couplingManager,
176
                                                 timeLoop, solOld);
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

    // the linear solver
    using LinearSolver = UMFPackBackend;
    auto linearSolver = std::make_shared<LinearSolver>();

    using NewtonSolver = MultiDomainNewtonSolver<Assembler, LinearSolver, CouplingManager>;
    NewtonSolver nonLinearSolver(assembler, linearSolver, couplingManager);

    // time loop
    const auto episodeLength = getParam<Scalar>("TimeLoop.EpisodeLength");
    if (episodeLength > 0.0)
        timeLoop->setPeriodicCheckPoint(episodeLength);
    timeLoop->start(); do
    {
        // set previous solution for storage evaluations
        assembler->setPreviousSolution(solOld);

        // solve the non-linear system with time step control
        nonLinearSolver.solve(sol, *timeLoop);

        // make the new solution the old solution
        solOld = sol;
        stokesGridVariables->advanceTimeStep();
        darcyGridVariables->advanceTimeStep();

        // advance to the time loop to the next step
        timeLoop->advanceTimeStep();

        // call the postTimeStep routine for output
        darcyProblem->postTimeStep(sol[darcyIdx], *darcyGridVariables);

        // write vtk output
        if (timeLoop->isCheckPoint() || timeLoop->finished() || episodeLength < 0.0)
        {
            stokesVtkWriter.write(timeLoop->time());
            darcyVtkWriter.write(timeLoop->time());
        }

        // report statistics of this time step
        timeLoop->reportTimeStep();

        // set new dt as suggested by newton solver
        timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize()));

    } while (!timeLoop->finished());

    timeLoop->finalize(stokesGridView.comm());
    timeLoop->finalize(darcyGridView.comm());

    ////////////////////////////////////////////////////////////
    // finalize, print dumux message to say goodbye
    ////////////////////////////////////////////////////////////

    // print dumux end message
    if (mpiHelper.rank() == 0)
    {
        Parameters::print();
        DumuxMessage::print(/*firstCall=*/false);
    }

    return 0;
} // end main
catch (Dumux::ParameterException &e)
{
    std::cerr << std::endl << e << " ---> Abort!" << std::endl;
    return 1;
}
catch (Dune::DGFException & e)
{
    std::cerr << "DGF exception thrown (" << e <<
                 "). Most likely, the DGF file name is wrong "
                 "or the DGF file is corrupted, "
                 "e.g. missing hash at end of file or wrong number (dimensions) of entries."
                 << " ---> Abort!" << std::endl;
    return 2;
}
catch (Dune::Exception &e)
{
    std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl;
    return 3;
}
catch (...)
{
    std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl;
    return 4;
}