modelspmproblem.hh 17.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
 * \brief A simple Darcy test problem (cell-centered finite volume method).
 */
#ifndef DUMUX_DARCY_SUBPROBLEM_HH
#define DUMUX_DARCY_SUBPROBLEM_HH

#include <dune/grid/yaspgrid.hh>

29
#include <dumux/discretization/cctpfa.hh>
30
#include <dumux/io/gnuplotinterface.hh>
31
#include <dumux/material/fluidsystems/1padapter.hh>
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#include <dumux/material/fluidsystems/h2oair.hh>
#include <dumux/material/fluidmatrixinteractions/diffusivityconstanttortuosity.hh>

#include <dumux/porousmediumflow/problem.hh>

#if EXNUMBER >= 1
#include <dumux/porousmediumflow/2pnc/model.hh>
#include "../2pspatialparams.hh"
#else
#include <dumux/porousmediumflow/1pnc/model.hh>
#include "../1pspatialparams.hh"
#endif

namespace Dumux
{
template <class TypeTag>
class DarcySubProblem;

namespace Properties
{
52
53
// Create new type tags
namespace TTag {
54
#if EXNUMBER >= 1
55
struct DarcyOnePNC { using InheritsFrom = std::tuple<TwoPNC, CCTpfaModel>; };
56
#else
57
struct DarcyOnePNC { using InheritsFrom = std::tuple<OnePNC, CCTpfaModel>; };
58
#endif
59
} // end namespace TTag
60
61

// Set the problem property
62
template<class TypeTag>
63
struct Problem<TypeTag, TTag::DarcyOnePNC> { using type = Dumux::DarcySubProblem<TypeTag>; };
64
65

// The fluid system
66
template<class TypeTag>
67
struct FluidSystem<TypeTag, TTag::DarcyOnePNC>
68
{
69
    using H2OAir = FluidSystems::H2OAir<GetPropType<TypeTag, Properties::Scalar>>;
70
#if EXNUMBER == 0
71
72
73
    using type = FluidSystems::OnePAdapter<H2OAir, H2OAir::gasPhaseIdx>;
#else
    using type = H2OAir;
74
#endif
75
};
76
77

// Use moles
78
template<class TypeTag>
79
struct UseMoles<TypeTag, TTag::DarcyOnePNC> { static constexpr bool value = true; };
80
81

// Do not replace one equation with a total mass balance
82
template<class TypeTag>
83
struct ReplaceCompEqIdx<TypeTag, TTag::DarcyOnePNC> { static constexpr int value = 3; };
84
85

//! Use a model with constant tortuosity for the effective diffusivity
86
87
88
template<class TypeTag>
struct EffectiveDiffusivityModel<TypeTag, TTag::DarcyOnePNC>
{ using type = DiffusivityConstantTortuosity<GetPropType<TypeTag, Properties::Scalar>>; };
89
// Set the grid type
90
template<class TypeTag>
91
struct Grid<TypeTag, TTag::DarcyOnePNC> { using type = Dune::YaspGrid<2>; };
92
93
94

#if EXNUMBER >= 1
//! Set the default formulation to pw-Sn: This can be over written in the problem.
95
template<class TypeTag>
96
struct Formulation<TypeTag, TTag::DarcyOnePNC>
97
98
99
100
101
{ static constexpr auto value = TwoPFormulation::p1s0; };
#endif

// Set the spatial paramaters type
#if EXNUMBER >= 1
102
template<class TypeTag>
103
104
105
struct SpatialParams<TypeTag, TTag::DarcyOnePNC> {
    using type = TwoPSpatialParams<GetPropType<TypeTag, FVGridGeometry>, GetPropType<TypeTag, Scalar>>;
};
106
#else
107
template<class TypeTag>
108
109
110
struct SpatialParams<TypeTag, TTag::DarcyOnePNC> {
    using type = OnePSpatialParams<GetPropType<TypeTag, FVGridGeometry>, GetPropType<TypeTag, Scalar>>;
};
111
#endif
112
113

} // end namespace Properties
114
115
116
117
118

template <class TypeTag>
class DarcySubProblem : public PorousMediumFlowProblem<TypeTag>
{
    using ParentType = PorousMediumFlowProblem<TypeTag>;
119
120
121
122
123
124
125
    using GridView = GetPropType<TypeTag, Properties::GridView>;
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
    using NumEqVector = GetPropType<TypeTag, Properties::NumEqVector>;
    using BoundaryTypes = GetPropType<TypeTag, Properties::BoundaryTypes>;
    using FVElementGeometry = typename GetPropType<TypeTag, Properties::FVGridGeometry>::LocalView;
126
127
    using SubControlVolume = typename FVElementGeometry::SubControlVolume;
    using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace;
128
    using FVGridGeometry = GetPropType<TypeTag, Properties::FVGridGeometry>;
129
130

    // copy some indices for convenience
131
    using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices;
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    enum {
        // grid and world dimension
        dim = GridView::dimension,
        dimworld = GridView::dimensionworld,

        // primary variable indices
        conti0EqIdx = Indices::conti0EqIdx,
        pressureIdx = Indices::pressureIdx,
#if EXNUMBER >= 3
        saturationIdx = Indices::switchIdx,
        transportCompIdx = Indices::switchIdx
#elif EXNUMBER >= 1
        transportCompIdx = Indices::switchIdx
#else
146
147
        phaseIdx = 0,
        transportCompIdx = 1
148
149
150
151
152
153
#endif
    };

    using Element = typename GridView::template Codim<0>::Entity;
    using GlobalPosition = Dune::FieldVector<Scalar, dimworld>;

154
    using CouplingManager = GetPropType<TypeTag, Properties::CouplingManager>;
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    using TimeLoopPtr = std::shared_ptr<TimeLoop<Scalar>>;

public:
    DarcySubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry,
                   std::shared_ptr<CouplingManager> couplingManager)
    : ParentType(fvGridGeometry, "Darcy"), eps_(1e-7), couplingManager_(couplingManager)
    {
#if EXNUMBER >= 3
        saturation_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.Saturation");
#else
        moleFraction_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.MoleFraction");
#endif

        // initialize output file
        plotFluxes_ = getParamFromGroup<bool>(this->paramGroup(), "Problem.PlotFluxes", false);
        plotStorage_ = getParamFromGroup<bool>(this->paramGroup(), "Problem.PlotStorage", false);
        storageFileName_ = "storage_" + getParam<std::string>("Problem.Name") + "_" + this->name() + ".csv";
        storageFile_.open(storageFileName_);
        storageFile_ << "#Time[s]" << ";"
                     << "WaterMass[kg]" << ";"
                     << "WaterMassLoss[kg]" << ";"
                     << "EvaporationRate[mm/d]"
                     << std::endl;
    }

    /*!
     * \name Simulation steering
     */
    // \{

    /*!
     * \brief Initialize the problem.
     */
    template<class SolutionVector, class GridVariables>
    void init(const SolutionVector& curSol,
              const GridVariables& gridVariables)
    {
#if EXNUMBER >= 2
        initialWaterContent_ = evaluateWaterMassStorageTerm(curSol, gridVariables);
        lastWaterMass_ = initialWaterContent_;
#endif
    }

    template<class SolutionVector, class GridVariables>
    void postTimeStep(const SolutionVector& curSol,
                      const GridVariables& gridVariables)

    {
        evaluateWaterMassStorageTerm(curSol, gridVariables);
        evaluateInterfaceFluxes(curSol, gridVariables);

        gnuplotStorage_.resetPlot();
        gnuplotStorage_.setDatafileSeparator(';');
        gnuplotStorage_.setXlabel("time [d]");
        gnuplotStorage_.setXRange(0.0, getParam<Scalar>("TimeLoop.TEnd"));
        gnuplotStorage_.setYlabel("evaporation rate [mm/d]");
        gnuplotStorage_.setOption("set yrange [0.0:]");
        gnuplotStorage_.setOption("set y2label 'cumulative mass loss'");
        gnuplotStorage_.setOption("set y2range [0.0:0.5]");
        gnuplotStorage_.setOption("set y2range [0.0:0.5]");
        gnuplotStorage_.addFileToPlot(storageFileName_, "using 1:4 with lines title 'evaporation rate'");
        gnuplotStorage_.addFileToPlot(storageFileName_, "using 1:3 axes x1y2 with lines title 'cumulative mass loss'");
        if (plotStorage_)
            gnuplotStorage_.plot("temp");
    }

    template<class SolutionVector, class GridVariables>
    Scalar evaluateWaterMassStorageTerm(const SolutionVector& curSol,
                                        const GridVariables& gridVariables)

    {
        // compute the mass in the entire domain
        Scalar waterMass = 0.0;

        for (const auto& element : elements(this->fvGridGeometry().gridView()))
        {
            auto fvGeometry = localView(this->fvGridGeometry());
            fvGeometry.bindElement(element);

            auto elemVolVars = localView(gridVariables.curGridVolVars());
            elemVolVars.bindElement(element, fvGeometry, curSol);

            for (auto&& scv : scvs(fvGeometry))
            {
                for(int phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx)
                {
                    // insert calculation of the water mass here
#if EXNUMBER >= 2
Timo Koch's avatar
Timo Koch committed
243
                    const auto& volVars = elemVolVars[scv];
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
                    waterMass += volVars.massFraction(phaseIdx, FluidSystem::H2OIdx) * volVars.density(phaseIdx)
                                 * volVars.saturation(phaseIdx) * volVars.porosity()
                                 * scv.volume() * volVars.extrusionFactor();
#else
                    waterMass += 0.0;
#endif
                }
            }
        }
#if EXNUMBER >= 2
        std::cout << "Mass of water is: " << waterMass << std::endl;
#endif

        Scalar cumMassLoss = initialWaterContent_ - waterMass;
        Scalar evaporationRate = (lastWaterMass_ - waterMass) * 86400
                                 / (this->fvGridGeometry().bBoxMax()[0] - this->fvGridGeometry().bBoxMin()[0])
                                 / timeLoop_->timeStepSize();
        lastWaterMass_ = waterMass;

        storageFile_ << timeLoop_->time() << ";"
                     << waterMass << ";"
                     << cumMassLoss << ";"
                     << evaporationRate
                     << std::endl;

        return waterMass;
    }

    template<class SolutionVector, class GridVariables>
    void evaluateInterfaceFluxes(const SolutionVector& curSol,
                                 const GridVariables& gridVariables)

    {
        std::vector<Scalar> x;
        std::vector<Scalar> y;

        for (const auto& element : elements(this->fvGridGeometry().gridView()))
        {
            auto fvGeometry = localView(this->fvGridGeometry());
            fvGeometry.bindElement(element);

            auto elemVolVars = localView(gridVariables.curGridVolVars());
            elemVolVars.bindElement(element, fvGeometry, curSol);

            for (auto&& scvf : scvfs(fvGeometry))
            {
                if (!couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf))
                    continue;

#if EXNUMBER >= 2
294
                NumEqVector flux = couplingManager().couplingData().massCouplingCondition(element, fvGeometry, elemVolVars, scvf);
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
#else
                NumEqVector flux(0.0); // add "massCouplingCondition" from the couplingManager here
#endif

                x.push_back(scvf.center()[0]);
                y.push_back(flux[transportCompIdx]);
            }
        }

        gnuplotInterfaceFluxes_.resetPlot();
        gnuplotInterfaceFluxes_.setXlabel("x-position [m]");
        gnuplotInterfaceFluxes_.setXRange(this->fvGridGeometry().bBoxMin()[0], this->fvGridGeometry().bBoxMax()[0]);
        gnuplotInterfaceFluxes_.setYlabel("flux [kg/(m^2 s)]");
        gnuplotInterfaceFluxes_.setYRange(-5e-4, 0.0);
        gnuplotInterfaceFluxes_.setOption("set label 'time: " + std::to_string(timeLoop_->time()/86400.) + "d' at graph 0.8,0.8 ");
        std::string fluxFileName = "flux_" + std::to_string(timeLoop_->timeStepIndex()) +
                                   "_" + getParam<std::string>("Problem.Name") + "_" + this->name() + ".csv";
        gnuplotInterfaceFluxes_.addDataSetToPlot(x, y, fluxFileName, "with lines title 'water mass flux'");
        if (plotFluxes_)
            gnuplotInterfaceFluxes_.plot("flux_" + std::to_string(timeLoop_->timeStepIndex()));
    }

317
318
319
320
321
    /*!
     * \name Problem parameters
     */
    // \{

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
    /*!
     * \brief Return the temperature within the domain in [K].
     *
     */
    Scalar temperature() const
    { return 293.15; }
    // \}

    /*!
     * \name Boundary conditions
     */
    // \{

    /*!
      * \brief Specifies which kind of boundary condition should be
      *        used for which equation on a given boundary control volume.
      *
      * \param element The element
      * \param scvf The boundary sub control volume face
      */
    BoundaryTypes boundaryTypes(const Element& element, const SubControlVolumeFace& scvf) const
    {
        BoundaryTypes values;
        values.setAllNeumann();

        if (couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf))
            values.setAllCouplingNeumann();

        return values;
    }

    /*!
     * \brief Evaluate the boundary conditions for a Neumann control volume.
     *
     * \param element The element for which the Neumann boundary condition is set
     * \param fvGeomentry The fvGeometry
     * \param elemVolVars The element volume variables
     * \param scvf The boundary sub control volume face
     *
     * For this method, the \a values variable stores primary variables.
     */
    template<class ElementVolumeVariables>
    NumEqVector neumann(const Element& element,
                        const FVElementGeometry& fvGeometry,
                        const ElementVolumeVariables& elemVolVars,
                        const SubControlVolumeFace& scvf) const
    {
        NumEqVector values(0.0);

        if (couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf))
372
            values = couplingManager().couplingData().massCouplingCondition(element, fvGeometry, elemVolVars, scvf);
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

        return values;
    }

    // \}

    /*!
     * \name Volume terms
     */
    // \{
    /*!
     * \brief Evaluate the source term for all phases within a given
     *        sub-control-volume.
     *
     * \param element The element for which the source term is set
     * \param fvGeomentry The fvGeometry
     * \param elemVolVars The element volume variables
     * \param scv The subcontrolvolume
     */
    template<class ElementVolumeVariables>
393
    NumEqVector source(const Element& element,
394
395
                       const FVElementGeometry& fvGeometry,
                       const ElementVolumeVariables& elemVolVars,
396
                       const SubControlVolume& scv) const
397
398
399
400
401
402
403
404
405
406
407
408
    { return NumEqVector(0.0); }

    // \}

    /*!
     * \brief Evaluate the initial value for a control volume.
     *
     * \param element The element
     *
     * For this method, the \a priVars parameter stores primary
     * variables.
     */
409
    PrimaryVariables initialAtPos(const GlobalPosition& globalPos) const
410
    {
411
412
        static const Scalar stokesPressure = getParamFromGroup<Scalar>("Stokes", "Problem.Pressure");

413
414
415
416
417
418
419
420
421
422
        PrimaryVariables values(0.0);
#if EXNUMBER >= 3
        values.setState(3/*bothPhases*/);
        values[saturationIdx] = saturation_;
#elif EXNUMBER >= 1
        values.setState(2/*secondPhaseOnly*/);
        values[transportCompIdx] = moleFraction_;
#else
        values[transportCompIdx] = moleFraction_;
#endif
423
        values[pressureIdx] = stokesPressure;
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
        return values;
    }

    // \}

    //! Set the coupling manager
    void setCouplingManager(std::shared_ptr<CouplingManager> cm)
    { couplingManager_ = cm; }

    //! Get the coupling manager
    const CouplingManager& couplingManager() const
    { return *couplingManager_; }

    void setTimeLoop(TimeLoopPtr timeLoop)
    { timeLoop_ = timeLoop; }

private:
    bool onLeftBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[0] < this->fvGridGeometry().bBoxMin()[0] + eps_; }

    bool onRightBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_; }

    bool onLowerBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[1] < this->fvGridGeometry().bBoxMin()[1] + eps_; }

    bool onUpperBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[1] > this->fvGridGeometry().bBoxMax()[1] - eps_; }

    Scalar eps_;
#if EXNUMBER >= 3
    Scalar saturation_;
#else
    Scalar moleFraction_;
#endif

    Scalar initialWaterContent_ = 0.0;
    Scalar lastWaterMass_ = 0.0;

    TimeLoopPtr timeLoop_;
    std::shared_ptr<CouplingManager> couplingManager_;

    std::string storageFileName_;
    std::ofstream storageFile_;
    bool plotFluxes_;
    bool plotStorage_;
    Dumux::GnuplotInterface<Scalar> gnuplotInterfaceFluxes_;
    Dumux::GnuplotInterface<Scalar> gnuplotStorage_;
};
473
} //end namespace Dumux
474
475

#endif //DUMUX_DARCY_SUBPROBLEM_HH