exercise_properties_solution.cc 10.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
22
 * \brief test for the two-phase porousmedium flow model
23
24
25
26
27
28
29
30
31
32
 */
#include <config.h>

#include <ctime>
#include <iostream>

#include <dune/common/parallel/mpihelper.hh>
#include <dune/common/timer.hh>
#include <dune/grid/io/file/dgfparser/dgfexception.hh>
#include <dune/grid/io/file/vtk.hh>
33
34
35
#include <dune/istl/io.hh>

#include "problem.hh"
36
37
38

#include <dumux/common/properties.hh>
#include <dumux/common/parameters.hh>
39
#include <dumux/common/valgrind.hh>
40
41
42
43
#include <dumux/common/dumuxmessage.hh>
#include <dumux/common/defaultusagemessage.hh>

#include <dumux/linear/amgbackend.hh>
44
#include <dumux/nonlinear/newtonsolver.hh>
45
46
47
48

#include <dumux/assembly/fvassembler.hh>
#include <dumux/assembly/diffmethod.hh>

49
#include <dumux/discretization/method.hh>
50
51
52

#include <dumux/io/vtkoutputmodule.hh>
#include <dumux/io/grid/gridmanager.hh>
53
#include <dumux/io/loadsolution.hh>
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
/*!
 * \brief Provides an interface for customizing error messages associated with
 *        reading in parameters.
 *
 * \param progName  The name of the program, that was tried to be started.
 * \param errorMsg  The error message that was issued by the start function.
 *                  Comprises the thing that went wrong and a general help message.
 */
void usage(const char *progName, const std::string &errorMsg)
{
    if (errorMsg.size() > 0) {
        std::string errorMessageOut = "\nUsage: ";
                    errorMessageOut += progName;
                    errorMessageOut += " [options]\n";
                    errorMessageOut += errorMsg;
                    errorMessageOut += "\n\nThe list of mandatory arguments for this program is:\n"
                                        "\t-TimeManager.TEnd               End of the simulation [s] \n"
                                        "\t-TimeManager.DtInitial          Initial timestep size [s] \n"
                                        "\t-Grid.LowerLeft                 Lower left corner coordinates\n"
                                        "\t-Grid.UpperRight                Upper right corner coordinates\n"
                                        "\t-Grid.Cells                     Number of cells in respective coordinate directions\n"
                                        "\t                                definition in DGF format\n"
                                        "\t-SpatialParams.LensLowerLeft   coordinates of the lower left corner of the lens [m] \n"
                                        "\t-SpatialParams.LensUpperRight  coordinates of the upper right corner of the lens [m] \n"
                                        "\t-SpatialParams.Permeability     Permeability of the domain [m^2] \n"
                                        "\t-SpatialParams.PermeabilityLens Permeability of the lens [m^2] \n";

        std::cout << errorMessageOut
                  << "\n";
    }
}

int main(int argc, char** argv) try
88
89
90
91
{
    using namespace Dumux;

    // define the type tag for this problem
92
    using TypeTag = TTAG(TwoPIncompressibleTpfa);
93
94
95
96
97
98
99
100
101

    // initialize MPI, finalize is done automatically on exit
    const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv);

    // print dumux start message
    if (mpiHelper.rank() == 0)
        DumuxMessage::print(/*firstCall=*/true);

    // parse command line arguments and input file
102
    Parameters::init(argc, argv, usage);
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

    // try to create a grid (from the given grid file or the input file)
    GridManager<typename GET_PROP_TYPE(TypeTag, Grid)> gridManager;
    gridManager.init();

    ////////////////////////////////////////////////////////////
    // run instationary non-linear problem on this grid
    ////////////////////////////////////////////////////////////

    // we compute on the leaf grid view
    const auto& leafGridView = gridManager.grid().leafGridView();

    // create the finite volume grid geometry
    using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry);
    auto fvGridGeometry = std::make_shared<FVGridGeometry>(leafGridView);
    fvGridGeometry->update();

    // the problem (initial and boundary conditions)
    using Problem = typename GET_PROP_TYPE(TypeTag, Problem);
    auto problem = std::make_shared<Problem>(fvGridGeometry);

124
125
126
127
    // check if we are about to restart a previously interrupted simulation
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    Scalar restartTime = getParam<Scalar>("Restart.Time", 0);

128
    // the solution vector
129
    using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
130
    SolutionVector x(fvGridGeometry->numDofs());
131
132
133
134
135
136
137
138
139
140
141
142
    if (restartTime > 0)
    {
        using IOFields = GetPropType<TypeTag, Properties::IOFields>;
        using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
        using ModelTraits = GetPropType<TypeTag, Properties::ModelTraits>;
        using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
        const auto fileName = getParam<std::string>("Restart.File");
        const auto pvName = createPVNameFunction<IOFields, PrimaryVariables, ModelTraits, FluidSystem>();
        loadSolution(x, fileName, pvName, *fvGridGeometry);
    }
    else
        problem->applyInitialSolution(x);
143
144
145
146
147
    auto xOld = x;

    // the grid variables
    using GridVariables = typename GET_PROP_TYPE(TypeTag, GridVariables);
    auto gridVariables = std::make_shared<GridVariables>(problem, fvGridGeometry);
148
    gridVariables->init(x);
149
150
151
152
153
154
155
156
157

    // get some time loop parameters
    using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar);
    const auto tEnd = getParam<Scalar>("TimeLoop.TEnd");
    const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize");
    auto dt = getParam<Scalar>("TimeLoop.DtInitial");

    // intialize the vtk output module
    using VtkOutputFields = typename GET_PROP_TYPE(TypeTag, VtkOutputFields);
158

159
160
161
162
163
164
165
    // intialize the vtk output module
    using VtkOutputFields = GetPropType<TypeTag, Properties::VtkOutputFields>;
    VtkOutputModule<GridVariables, SolutionVector> vtkWriter(*gridVariables, x, problem->name());
    using VelocityOutput = GetPropType<TypeTag, Properties::VelocityOutput>;
    vtkWriter.addVelocityOutput(std::make_shared<VelocityOutput>(*gridVariables));
    VtkOutputFields::initOutputModule(vtkWriter); //!< Add model specific output fields
    vtkWriter.write(restartTime);
166
167

    // instantiate time loop
168
    auto timeLoop = std::make_shared<TimeLoop<Scalar>>(0.0, dt, tEnd);
169
170
171
172
173
174
175
176
177
178
179
    timeLoop->setMaxTimeStepSize(maxDt);

    // the assembler with time loop for instationary problem
    using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>;
    auto assembler = std::make_shared<Assembler>(problem, fvGridGeometry, gridVariables, timeLoop);

    // the linear solver
    using LinearSolver = AMGBackend<TypeTag>;
    auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->dofMapper());

    // the non-linear solver
180
    using NewtonSolver = Dumux::NewtonSolver<Assembler, LinearSolver>;
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    NewtonSolver nonLinearSolver(assembler, linearSolver);

    // time loop
    timeLoop->start(); do
    {
        // set previous solution for storage evaluations
        assembler->setPreviousSolution(xOld);

        // solve the non-linear system with time step control
        nonLinearSolver.solve(x, *timeLoop);

        // make the new solution the old solution
        xOld = x;
        gridVariables->advanceTimeStep();

        // advance to the time loop to the next step
        timeLoop->advanceTimeStep();

199
200
201
        // write vtk output
        vtkWriter.write(timeLoop->time());

202
203
204
        // report statistics of this time step
        timeLoop->reportTimeStep();

205
        // set new dt as suggested by the Newton solver
206
207
208
209
        timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize()));

    } while (!timeLoop->finished());

210
211
212
    // output some Newton statistics
    nonLinearSolver.report();

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    timeLoop->finalize(leafGridView.comm());

    ////////////////////////////////////////////////////////////
    // finalize, print dumux message to say goodbye
    ////////////////////////////////////////////////////////////

    // print dumux end message
    if (mpiHelper.rank() == 0)
    {
        Parameters::print();
        DumuxMessage::print(/*firstCall=*/false);
    }

    return 0;
} // end main
catch (Dumux::ParameterException &e)
{
    std::cerr << std::endl << e << " ---> Abort!" << std::endl;
    return 1;
}
catch (Dune::DGFException & e)
{
    std::cerr << "DGF exception thrown (" << e <<
                 "). Most likely, the DGF file name is wrong "
                 "or the DGF file is corrupted, "
                 "e.g. missing hash at end of file or wrong number (dimensions) of entries."
                 << " ---> Abort!" << std::endl;
    return 2;
}
catch (Dune::Exception &e)
{
    std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl;
    return 3;
}
catch (...)
{
    std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl;
    return 4;
}