porousmediumsubproblem.hh 14.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
 * \brief A simple Darcy test problem (cell-centered finite volume method).
 */
#ifndef DUMUX_DARCY_SUBPROBLEM_HH
#define DUMUX_DARCY_SUBPROBLEM_HH

27
#include <dumux/common/properties.hh>
28
#include <dumux/common/timeloop.hh>
29

30
31
#include <dumux/io/gnuplotinterface.hh>
#include <dumux/porousmediumflow/problem.hh>
32

33
namespace Dumux {
34
35
36
/*!
 * \brief The porous medium flow sub problem
 */
37
template <class TypeTag>
38
class PorousMediumSubProblem : public PorousMediumFlowProblem<TypeTag>
39
40
{
    using ParentType = PorousMediumFlowProblem<TypeTag>;
41
    using GridView = typename GetPropType<TypeTag, Properties::GridGeometry>::GridView;
42
43
44
45
46
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
    using NumEqVector = GetPropType<TypeTag, Properties::NumEqVector>;
    using BoundaryTypes = GetPropType<TypeTag, Properties::BoundaryTypes>;
47
    using FVElementGeometry = typename GetPropType<TypeTag, Properties::GridGeometry>::LocalView;
48
49
    using SubControlVolume = typename FVElementGeometry::SubControlVolume;
    using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace;
50
    using FVGridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
51
52
    using GridVariables = GetPropType<TypeTag, Properties::GridVariables>;
    using ElementFluxVariablesCache = typename GridVariables::GridFluxVariablesCache::LocalView;
53
54

    // copy some indices for convenience
55
    using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices;
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    enum {
        // grid and world dimension
        dim = GridView::dimension,
        dimworld = GridView::dimensionworld,

        // primary variable indices
        conti0EqIdx = Indices::conti0EqIdx,
        pressureIdx = Indices::pressureIdx,
#if EXNUMBER >= 3
        saturationIdx = Indices::switchIdx,
        transportCompIdx = Indices::switchIdx
#elif EXNUMBER >= 1
        transportCompIdx = Indices::switchIdx
#else
70
71
        phaseIdx = 0,
        transportCompIdx = 1
72
73
74
75
76
77
#endif
    };

    using Element = typename GridView::template Codim<0>::Entity;
    using GlobalPosition = Dune::FieldVector<Scalar, dimworld>;

78
    using CouplingManager = GetPropType<TypeTag, Properties::CouplingManager>;
79
80
81
    using TimeLoopPtr = std::shared_ptr<TimeLoop<Scalar>>;

public:
82
    PorousMediumSubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry,
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
                   std::shared_ptr<CouplingManager> couplingManager)
    : ParentType(fvGridGeometry, "Darcy"), eps_(1e-7), couplingManager_(couplingManager)
    {
#if EXNUMBER >= 3
        saturation_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.Saturation");
#else
        moleFraction_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.MoleFraction");
#endif

        // initialize output file
        plotFluxes_ = getParamFromGroup<bool>(this->paramGroup(), "Problem.PlotFluxes", false);
        plotStorage_ = getParamFromGroup<bool>(this->paramGroup(), "Problem.PlotStorage", false);
        storageFileName_ = "storage_" + getParam<std::string>("Problem.Name") + "_" + this->name() + ".csv";
        storageFile_.open(storageFileName_);
        storageFile_ << "#Time[s]" << ";"
                     << "WaterMass[kg]" << ";"
                     << "WaterMassLoss[kg]" << ";"
                     << "EvaporationRate[mm/d]"
                     << std::endl;
    }

    /*!
     * \name Simulation steering
     */
    // \{

    /*!
     * \brief Initialize the problem.
     */
    template<class SolutionVector, class GridVariables>
    void init(const SolutionVector& curSol,
              const GridVariables& gridVariables)
    {
#if EXNUMBER >= 2
        initialWaterContent_ = evaluateWaterMassStorageTerm(curSol, gridVariables);
        lastWaterMass_ = initialWaterContent_;
#endif
    }

    template<class SolutionVector, class GridVariables>
    void postTimeStep(const SolutionVector& curSol,
                      const GridVariables& gridVariables)

    {
        evaluateWaterMassStorageTerm(curSol, gridVariables);
        evaluateInterfaceFluxes(curSol, gridVariables);

        gnuplotStorage_.resetPlot();
        gnuplotStorage_.setDatafileSeparator(';');
        gnuplotStorage_.setXlabel("time [d]");
        gnuplotStorage_.setXRange(0.0, getParam<Scalar>("TimeLoop.TEnd"));
        gnuplotStorage_.setYlabel("evaporation rate [mm/d]");
        gnuplotStorage_.setOption("set yrange [0.0:]");
        gnuplotStorage_.setOption("set y2label 'cumulative mass loss'");
        gnuplotStorage_.setOption("set y2range [0.0:0.5]");
        gnuplotStorage_.setOption("set y2range [0.0:0.5]");
        gnuplotStorage_.addFileToPlot(storageFileName_, "using 1:4 with lines title 'evaporation rate'");
        gnuplotStorage_.addFileToPlot(storageFileName_, "using 1:3 axes x1y2 with lines title 'cumulative mass loss'");
        if (plotStorage_)
            gnuplotStorage_.plot("temp");
    }

    template<class SolutionVector, class GridVariables>
    Scalar evaluateWaterMassStorageTerm(const SolutionVector& curSol,
                                        const GridVariables& gridVariables)

    {
        // compute the mass in the entire domain
        Scalar waterMass = 0.0;

153
        for (const auto& element : elements(this->gridGeometry().gridView()))
154
        {
155
            auto fvGeometry = localView(this->gridGeometry());
156
157
158
159
160
161
162
163
164
165
166
            fvGeometry.bindElement(element);

            auto elemVolVars = localView(gridVariables.curGridVolVars());
            elemVolVars.bindElement(element, fvGeometry, curSol);

            for (auto&& scv : scvs(fvGeometry))
            {
                for(int phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx)
                {
                    // insert calculation of the water mass here
#if EXNUMBER >= 2
Timo Koch's avatar
Timo Koch committed
167
                    const auto& volVars = elemVolVars[scv];
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
                    waterMass += volVars.massFraction(phaseIdx, FluidSystem::H2OIdx) * volVars.density(phaseIdx)
                                 * volVars.saturation(phaseIdx) * volVars.porosity()
                                 * scv.volume() * volVars.extrusionFactor();
#else
                    waterMass += 0.0;
#endif
                }
            }
        }
#if EXNUMBER >= 2
        std::cout << "Mass of water is: " << waterMass << std::endl;
#endif

        Scalar cumMassLoss = initialWaterContent_ - waterMass;
        Scalar evaporationRate = (lastWaterMass_ - waterMass) * 86400
183
                                 / (this->gridGeometry().bBoxMax()[0] - this->gridGeometry().bBoxMin()[0])
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
                                 / timeLoop_->timeStepSize();
        lastWaterMass_ = waterMass;

        storageFile_ << timeLoop_->time() << ";"
                     << waterMass << ";"
                     << cumMassLoss << ";"
                     << evaporationRate
                     << std::endl;

        return waterMass;
    }

    template<class SolutionVector, class GridVariables>
    void evaluateInterfaceFluxes(const SolutionVector& curSol,
                                 const GridVariables& gridVariables)

    {
        std::vector<Scalar> x;
        std::vector<Scalar> y;

204
        for (const auto& element : elements(this->gridGeometry().gridView()))
205
        {
206
            auto fvGeometry = localView(this->gridGeometry());
207
208
209
210
211
212
213
214
215
216
217
            fvGeometry.bindElement(element);

            auto elemVolVars = localView(gridVariables.curGridVolVars());
            elemVolVars.bindElement(element, fvGeometry, curSol);

            for (auto&& scvf : scvfs(fvGeometry))
            {
                if (!couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf))
                    continue;

#if EXNUMBER >= 2
218
                NumEqVector flux = couplingManager().couplingData().massCouplingCondition(element, fvGeometry, elemVolVars, scvf);
219
220
221
222
223
224
225
226
227
228
229
#else
                NumEqVector flux(0.0); // add "massCouplingCondition" from the couplingManager here
#endif

                x.push_back(scvf.center()[0]);
                y.push_back(flux[transportCompIdx]);
            }
        }

        gnuplotInterfaceFluxes_.resetPlot();
        gnuplotInterfaceFluxes_.setXlabel("x-position [m]");
230
        gnuplotInterfaceFluxes_.setXRange(this->gridGeometry().bBoxMin()[0], this->gridGeometry().bBoxMax()[0]);
231
232
233
234
235
236
237
238
239
240
        gnuplotInterfaceFluxes_.setYlabel("flux [kg/(m^2 s)]");
        gnuplotInterfaceFluxes_.setYRange(-5e-4, 0.0);
        gnuplotInterfaceFluxes_.setOption("set label 'time: " + std::to_string(timeLoop_->time()/86400.) + "d' at graph 0.8,0.8 ");
        std::string fluxFileName = "flux_" + std::to_string(timeLoop_->timeStepIndex()) +
                                   "_" + getParam<std::string>("Problem.Name") + "_" + this->name() + ".csv";
        gnuplotInterfaceFluxes_.addDataSetToPlot(x, y, fluxFileName, "with lines title 'water mass flux'");
        if (plotFluxes_)
            gnuplotInterfaceFluxes_.plot("flux_" + std::to_string(timeLoop_->timeStepIndex()));
    }

241
242
243
244
245
    /*!
     * \name Problem parameters
     */
    // \{

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    /*!
     * \brief Return the temperature within the domain in [K].
     *
     */
    Scalar temperature() const
    { return 293.15; }
    // \}

    /*!
     * \name Boundary conditions
     */
    // \{

    /*!
      * \brief Specifies which kind of boundary condition should be
      *        used for which equation on a given boundary control volume.
      *
      * \param element The element
      * \param scvf The boundary sub control volume face
      */
    BoundaryTypes boundaryTypes(const Element& element, const SubControlVolumeFace& scvf) const
    {
        BoundaryTypes values;
        values.setAllNeumann();

        if (couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf))
            values.setAllCouplingNeumann();

        return values;
    }

    /*!
     * \brief Evaluate the boundary conditions for a Neumann control volume.
     *
     * \param element The element for which the Neumann boundary condition is set
     * \param fvGeomentry The fvGeometry
     * \param elemVolVars The element volume variables
     * \param scvf The boundary sub control volume face
     *
     * For this method, the \a values variable stores primary variables.
     */
    template<class ElementVolumeVariables>
    NumEqVector neumann(const Element& element,
                        const FVElementGeometry& fvGeometry,
                        const ElementVolumeVariables& elemVolVars,
291
                        const ElementFluxVariablesCache& elemFluxVarsCache,
292
293
294
295
296
                        const SubControlVolumeFace& scvf) const
    {
        NumEqVector values(0.0);

        if (couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf))
297
            values = couplingManager().couplingData().massCouplingCondition(element, fvGeometry, elemVolVars, scvf);
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

        return values;
    }

    // \}

    /*!
     * \name Volume terms
     */
    // \{
    /*!
     * \brief Evaluate the source term for all phases within a given
     *        sub-control-volume.
     *
     * \param element The element for which the source term is set
     * \param fvGeomentry The fvGeometry
     * \param elemVolVars The element volume variables
     * \param scv The subcontrolvolume
     */
    template<class ElementVolumeVariables>
318
    NumEqVector source(const Element& element,
319
320
                       const FVElementGeometry& fvGeometry,
                       const ElementVolumeVariables& elemVolVars,
321
                       const SubControlVolume& scv) const
322
323
324
325
326
327
328
329
330
331
332
333
    { return NumEqVector(0.0); }

    // \}

    /*!
     * \brief Evaluate the initial value for a control volume.
     *
     * \param element The element
     *
     * For this method, the \a priVars parameter stores primary
     * variables.
     */
334
    PrimaryVariables initialAtPos(const GlobalPosition& globalPos) const
335
    {
336
337
        static const Scalar stokesPressure = getParamFromGroup<Scalar>("Stokes", "Problem.Pressure");

338
339
340
341
342
343
344
345
346
347
        PrimaryVariables values(0.0);
#if EXNUMBER >= 3
        values.setState(3/*bothPhases*/);
        values[saturationIdx] = saturation_;
#elif EXNUMBER >= 1
        values.setState(2/*secondPhaseOnly*/);
        values[transportCompIdx] = moleFraction_;
#else
        values[transportCompIdx] = moleFraction_;
#endif
348
        values[pressureIdx] = stokesPressure;
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
        return values;
    }

    // \}

    //! Set the coupling manager
    void setCouplingManager(std::shared_ptr<CouplingManager> cm)
    { couplingManager_ = cm; }

    //! Get the coupling manager
    const CouplingManager& couplingManager() const
    { return *couplingManager_; }

    void setTimeLoop(TimeLoopPtr timeLoop)
    { timeLoop_ = timeLoop; }

private:
    bool onLeftBoundary_(const GlobalPosition &globalPos) const
367
    { return globalPos[0] < this->gridGeometry().bBoxMin()[0] + eps_; }
368
369

    bool onRightBoundary_(const GlobalPosition &globalPos) const
370
    { return globalPos[0] > this->gridGeometry().bBoxMax()[0] - eps_; }
371
372

    bool onLowerBoundary_(const GlobalPosition &globalPos) const
373
    { return globalPos[1] < this->gridGeometry().bBoxMin()[1] + eps_; }
374
375

    bool onUpperBoundary_(const GlobalPosition &globalPos) const
376
    { return globalPos[1] > this->gridGeometry().bBoxMax()[1] - eps_; }
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

    Scalar eps_;
#if EXNUMBER >= 3
    Scalar saturation_;
#else
    Scalar moleFraction_;
#endif

    Scalar initialWaterContent_ = 0.0;
    Scalar lastWaterMass_ = 0.0;

    TimeLoopPtr timeLoop_;
    std::shared_ptr<CouplingManager> couplingManager_;

    std::string storageFileName_;
    std::ofstream storageFile_;
    bool plotFluxes_;
    bool plotStorage_;
    Dumux::GnuplotInterface<Scalar> gnuplotInterfaceFluxes_;
    Dumux::GnuplotInterface<Scalar> gnuplotStorage_;
};
398

399
} //end namespace Dumux
400

401
#endif