ex_models_pmproblem.hh 15 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
 * \brief A simple Darcy test problem (cell-centered finite volume method).
 */
#ifndef DUMUX_DARCY_SUBPROBLEM_HH
#define DUMUX_DARCY_SUBPROBLEM_HH

#include <dune/grid/yaspgrid.hh>

#include <dumux/discretization/cellcentered/tpfa/properties.hh>
#include <dumux/io/gnuplotinterface.hh>
#include <dumux/material/fluidsystems/h2oair.hh>
#include <dumux/material/fluidmatrixinteractions/diffusivityconstanttortuosity.hh>

#include <dumux/porousmediumflow/problem.hh>

#include <dumux/porousmediumflow/1pnc/model.hh>
#include "../1pspatialparams.hh"

namespace Dumux
{
template <class TypeTag>
class DarcySubProblem;

namespace Properties
{
NEW_TYPE_TAG(DarcyTypeTag, INHERITS_FROM(CCTpfaModel, OnePNC));

// Set the problem property
SET_TYPE_PROP(DarcyTypeTag, Problem, Dumux::DarcySubProblem<TypeTag>);

// The fluid system
SET_TYPE_PROP(DarcyTypeTag, FluidSystem, FluidSystems::H2OAir<typename GET_PROP_TYPE(TypeTag, Scalar)>);

// Use gas as phase
SET_INT_PROP(DarcyTypeTag, PhaseIdx, GET_PROP_TYPE(TypeTag, FluidSystem)::gasPhaseIdx);

// Use moles
SET_BOOL_PROP(DarcyTypeTag, UseMoles, true);

// Do not replace one equation with a total mass balance
SET_INT_PROP(DarcyTypeTag, ReplaceCompEqIdx, 3);

//! Use a model with constant tortuosity for the effective diffusivity
SET_TYPE_PROP(DarcyTypeTag, EffectiveDiffusivityModel,
              DiffusivityConstantTortuosity<typename GET_PROP_TYPE(TypeTag, Scalar)>);

// Set the grid type
SET_TYPE_PROP(DarcyTypeTag, Grid, Dune::YaspGrid<2>);

// Set the spatial paramaters type
SET_TYPE_PROP(DarcyTypeTag, SpatialParams, OnePSpatialParams<TypeTag>);
}

template <class TypeTag>
class DarcySubProblem : public PorousMediumFlowProblem<TypeTag>
{
    using ParentType = PorousMediumFlowProblem<TypeTag>;
    using GridView = typename GET_PROP_TYPE(TypeTag, GridView);
    using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar);
    using PrimaryVariables = typename GET_PROP_TYPE(TypeTag, PrimaryVariables);
    using FluidSystem = typename GET_PROP_TYPE(TypeTag, FluidSystem);
    using NumEqVector = typename GET_PROP_TYPE(TypeTag, NumEqVector);
    using BoundaryTypes = typename GET_PROP_TYPE(TypeTag, BoundaryTypes);
    using FVElementGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry)::LocalView;
    using SubControlVolume = typename FVElementGeometry::SubControlVolume;
    using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace;
    using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry);

    // copy some indices for convenience
    using Indices = typename GET_PROP_TYPE(TypeTag, ModelTraits)::Indices;
    enum {
        // grid and world dimension
        dim = GridView::dimension,
        dimworld = GridView::dimensionworld,

        // primary variable indices
        conti0EqIdx = Indices::conti0EqIdx,
        pressureIdx = Indices::pressureIdx,
        phaseIdx = Indices::fluidSystemPhaseIdx,
        transportCompIdx = 1-phaseIdx
    };

    using Element = typename GridView::template Codim<0>::Entity;
    using GlobalPosition = Dune::FieldVector<Scalar, dimworld>;

    using CouplingManager = typename GET_PROP_TYPE(TypeTag, CouplingManager);
    using TimeLoopPtr = std::shared_ptr<TimeLoop<Scalar>>;

public:
    DarcySubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry,
                   std::shared_ptr<CouplingManager> couplingManager)
    : ParentType(fvGridGeometry, "Darcy"), eps_(1e-7), couplingManager_(couplingManager)
    {
        moleFraction_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.MoleFraction");
        pressure_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.Pressure");

        // initialize output file
        plotFluxes_ = getParamFromGroup<bool>(this->paramGroup(), "Problem.PlotFluxes", false);
        plotStorage_ = getParamFromGroup<bool>(this->paramGroup(), "Problem.PlotStorage", false);
        storageFileName_ = "storage_" + getParam<std::string>("Problem.Name") + "_" + this->name() + ".csv";
        storageFile_.open(storageFileName_);
        storageFile_ << "#Time[s]" << ";"
                     << "WaterMass[kg]" << ";"
                     << "WaterMassLoss[kg]" << ";"
                     << "EvaporationRate[mm/d]"
                     << std::endl;
    }

    /*!
     * \name Simulation steering
     */
    // \{

    /*!
     * \brief Initialize the problem.
     */
    template<class SolutionVector, class GridVariables>
    void init(const SolutionVector& curSol,
              const GridVariables& gridVariables)
    { }

    template<class SolutionVector, class GridVariables>
    void postTimeStep(const SolutionVector& curSol,
                      const GridVariables& gridVariables)

    {
        evaluateWaterMassStorageTerm(curSol, gridVariables);
        evaluateInterfaceFluxes(curSol, gridVariables);

        gnuplotStorage_.resetPlot();
        gnuplotStorage_.setDatafileSeparator(';');
        gnuplotStorage_.setXlabel("time [d]");
        gnuplotStorage_.setXRange(0.0, getParam<Scalar>("TimeLoop.TEnd"));
        gnuplotStorage_.setYlabel("evaporation rate [mm/d]");
        gnuplotStorage_.setOption("set yrange [0.0:]");
        gnuplotStorage_.setOption("set y2label 'cumulative mass loss'");
        gnuplotStorage_.setOption("set y2range [0.0:0.5]");
        gnuplotStorage_.setOption("set y2range [0.0:0.5]");
        gnuplotStorage_.addFileToPlot(storageFileName_, "using 1:4 with lines title 'evaporation rate'");
        gnuplotStorage_.addFileToPlot(storageFileName_, "using 1:3 axes x1y2 with lines title 'cumulative mass loss'");
        if (plotStorage_)
            gnuplotStorage_.plot("temp");
    }

    template<class SolutionVector, class GridVariables>
    Scalar evaluateWaterMassStorageTerm(const SolutionVector& curSol,
                                        const GridVariables& gridVariables)

    {
        // compute the mass in the entire domain
        Scalar waterMass = 0.0;

        for (const auto& element : elements(this->fvGridGeometry().gridView()))
        {
            auto fvGeometry = localView(this->fvGridGeometry());
            fvGeometry.bindElement(element);

            auto elemVolVars = localView(gridVariables.curGridVolVars());
            elemVolVars.bindElement(element, fvGeometry, curSol);

            for (auto&& scv : scvs(fvGeometry))
            {
                const auto& volVars = elemVolVars[scv];
                for(int phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx)
                {
                    // insert calculation of the water mass here
                    waterMass += 0.0;
                }
            }
        }

        Scalar cumMassLoss = initialWaterContent_ - waterMass;
        Scalar evaporationRate = (lastWaterMass_ - waterMass) * 86400
                                 / (this->fvGridGeometry().bBoxMax()[0] - this->fvGridGeometry().bBoxMin()[0])
                                 / timeLoop_->timeStepSize();
        lastWaterMass_ = waterMass;

        storageFile_ << timeLoop_->time() << ";"
                     << waterMass << ";"
                     << cumMassLoss << ";"
                     << evaporationRate
                     << std::endl;

        return waterMass;
    }

    template<class SolutionVector, class GridVariables>
    void evaluateInterfaceFluxes(const SolutionVector& curSol,
                                 const GridVariables& gridVariables)

    {
        std::vector<Scalar> x;
        std::vector<Scalar> y;

        for (const auto& element : elements(this->fvGridGeometry().gridView()))
        {
            auto fvGeometry = localView(this->fvGridGeometry());
            fvGeometry.bindElement(element);

            auto elemVolVars = localView(gridVariables.curGridVolVars());
            elemVolVars.bindElement(element, fvGeometry, curSol);

            for (auto&& scvf : scvfs(fvGeometry))
            {
                if (!couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf))
                    continue;

                // NOTE: binding the coupling context is necessary
                couplingManager_->bindCouplingContext(CouplingManager::darcyIdx, element);
                NumEqVector flux(0.0); // use "massCouplingCondition" from the couplingManager here

                x.push_back(scvf.center()[0]);
                y.push_back(flux[transportCompIdx]);
            }
        }

        gnuplotInterfaceFluxes_.resetPlot();
        gnuplotInterfaceFluxes_.setXlabel("x-position [m]");
        gnuplotInterfaceFluxes_.setXRange(this->fvGridGeometry().bBoxMin()[0], this->fvGridGeometry().bBoxMax()[0]);
        gnuplotInterfaceFluxes_.setYlabel("flux [kg/(m^2 s)]");
        gnuplotInterfaceFluxes_.setYRange(-5e-4, 0.0);
        gnuplotInterfaceFluxes_.setOption("set label 'time: " + std::to_string(timeLoop_->time()/86400.) + "d' at graph 0.8,0.8 ");
        std::string fluxFileName = "flux_" + std::to_string(timeLoop_->timeStepIndex()) +
                                   "_" + getParam<std::string>("Problem.Name") + "_" + this->name() + ".csv";
        gnuplotInterfaceFluxes_.addDataSetToPlot(x, y, fluxFileName, "with lines title 'water mass flux'");
        if (plotFluxes_)
            gnuplotInterfaceFluxes_.plot("flux_" + std::to_string(timeLoop_->timeStepIndex()));
    }

    /*!
     * \brief Returns true if a restart file should be written to
     *        disk.
     */
    bool shouldWriteRestartFile() const
    { return false; }

    /*!
     * \name Problem parameters
     */
    // \{

    bool shouldWriteOutput() const // define output
    { return true; }

    /*!
     * \brief Return the temperature within the domain in [K].
     *
     */
    Scalar temperature() const
    { return 293.15; }
    // \}

    /*!
     * \name Boundary conditions
     */
    // \{

    /*!
      * \brief Specifies which kind of boundary condition should be
      *        used for which equation on a given boundary control volume.
      *
      * \param element The element
      * \param scvf The boundary sub control volume face
      */
    BoundaryTypes boundaryTypes(const Element& element, const SubControlVolumeFace& scvf) const
    {
        BoundaryTypes values;
        values.setAllNeumann();

        if (couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf))
            values.setAllCouplingNeumann();

        return values;
    }

    /*!
     * \brief Evaluate the boundary conditions for a Neumann control volume.
     *
     * \param element The element for which the Neumann boundary condition is set
     * \param fvGeomentry The fvGeometry
     * \param elemVolVars The element volume variables
     * \param scvf The boundary sub control volume face
     *
     * For this method, the \a values variable stores primary variables.
     */
    template<class ElementVolumeVariables>
    NumEqVector neumann(const Element& element,
                        const FVElementGeometry& fvGeometry,
                        const ElementVolumeVariables& elemVolVars,
                        const SubControlVolumeFace& scvf) const
    {
        NumEqVector values(0.0);

        if (couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf))
            values = couplingManager().couplingData().massCouplingCondition(fvGeometry, elemVolVars, scvf);

        return values;
    }

    // \}

    /*!
     * \name Volume terms
     */
    // \{
    /*!
     * \brief Evaluate the source term for all phases within a given
     *        sub-control-volume.
     *
     * \param element The element for which the source term is set
     * \param fvGeomentry The fvGeometry
     * \param elemVolVars The element volume variables
     * \param scv The subcontrolvolume
     */
    template<class ElementVolumeVariables>
    NumEqVector source(const Element &element,
                       const FVElementGeometry& fvGeometry,
                       const ElementVolumeVariables& elemVolVars,
                       const SubControlVolume &scv) const
    { return NumEqVector(0.0); }

    // \}

    /*!
     * \brief Evaluate the initial value for a control volume.
     *
     * \param element The element
     *
     * For this method, the \a priVars parameter stores primary
     * variables.
     */
    PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const
    {
        PrimaryVariables values(0.0);
        values[transportCompIdx] = moleFraction_;
        values[pressureIdx] = pressure_;
        return values;
    }

    // \}

    //! Set the coupling manager
    void setCouplingManager(std::shared_ptr<CouplingManager> cm)
    { couplingManager_ = cm; }

    //! Get the coupling manager
    const CouplingManager& couplingManager() const
    { return *couplingManager_; }

    void setTimeLoop(TimeLoopPtr timeLoop)
    { timeLoop_ = timeLoop; }

private:
    bool onLeftBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[0] < this->fvGridGeometry().bBoxMin()[0] + eps_; }

    bool onRightBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_; }

    bool onLowerBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[1] < this->fvGridGeometry().bBoxMin()[1] + eps_; }

    bool onUpperBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[1] > this->fvGridGeometry().bBoxMax()[1] - eps_; }

    Scalar eps_;
    Scalar moleFraction_;
    Scalar pressure_;

    Scalar initialWaterContent_ = 0.0;
    Scalar lastWaterMass_ = 0.0;

    TimeLoopPtr timeLoop_;
    std::shared_ptr<CouplingManager> couplingManager_;

    std::string storageFileName_;
    std::ofstream storageFile_;
    bool plotFluxes_;
    bool plotStorage_;
    Dumux::GnuplotInterface<Scalar> gnuplotInterfaceFluxes_;
    Dumux::GnuplotInterface<Scalar> gnuplotStorage_;
};
} //end namespace

#endif //DUMUX_DARCY_SUBPROBLEM_HH