injection2pproblem.hh 9.93 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
 * \brief The two-phase porousmediumflow problem for exercise runtime parameters
 */

#ifndef DUMUX_EXRUNTIMEPARAMS_INJECTION_PROBLEM_2P_HH
#define DUMUX_EXRUNTIMEPARAMS_INJECTION_PROBLEM_2P_HH

28
29
#include <dune/grid/yaspgrid.hh>

30
#include <dumux/discretization/cctpfa.hh>
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include <dumux/porousmediumflow/2p/model.hh>
#include <dumux/porousmediumflow/problem.hh>
#include <dumux/material/fluidsystems/h2on2.hh>

#include "injection2pspatialparams.hh"

namespace Dumux {

// forward declare problem
template <class TypeTag>
class InjectionProblem2P;

namespace Properties {
// define the TypeTag for this problem with a cell-centered two-point flux approximation spatial discretization.
45
46
// Create new type tags
namespace TTag {
Felix Weinhardt's avatar
Felix Weinhardt committed
47
48
struct Injection2p { using InheritsFrom = std::tuple<TwoP>; };
struct Injection2pCC { using InheritsFrom = std::tuple<Injection2p, CCTpfaModel>; };
49
} // end namespace TTag
50
51

// Set the grid type
52
template<class TypeTag>
Felix Weinhardt's avatar
Felix Weinhardt committed
53
struct Grid<TypeTag, TTag::Injection2p> { using type = Dune::YaspGrid<2>; };
54
55

// Set the problem property
56
template<class TypeTag>
Felix Weinhardt's avatar
Felix Weinhardt committed
57
struct Problem<TypeTag, TTag::Injection2p> { using type = InjectionProblem2P<TypeTag>; };
58
59

// Set the spatial parameters
Felix Weinhardt's avatar
Felix Weinhardt committed
60
SET_TYPE_PROP(Injection2p, SpatialParams,
61
62
              InjectionSpatialParams<GetPropType<TypeTag, Properties::FVGridGeometry>,
                                     GetPropType<TypeTag, Properties::Scalar>>);
63
64

// Set fluid configuration
65
template<class TypeTag>
Felix Weinhardt's avatar
Felix Weinhardt committed
66
struct FluidSystem<TypeTag, TTag::Injection2p> { using type = FluidSystems::H2ON2<GetPropType<TypeTag, Properties::Scalar>, FluidSystems::H2ON2DefaultPolicy</*fastButSimplifiedRelations=*/ true> >; };
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
} // end namespace Properties

/*!
 * \ingroup TwoPModel
 * \ingroup ImplicitTestProblems
 * \brief Gas injection problem where a gas (here  nitrogen) is injected into a fully
 *        water saturated medium. During buoyancy driven upward migration the gas
 *        passes a high temperature area.
 *
 * The domain is sized 60 m times 40 m.
 *
 * For the mass conservation equation neumann boundary conditions are used on
 * the top, on the bottom and on the right of the domain, while dirichlet conditions
 * apply on the left boundary.
 *
 * Gas is injected at the right boundary from 7 m to 15 m at a rate of
 * 0.001 kg/(s m), the remaining neumann boundaries are no-flow
 * boundaries.
 *
 * At the dirichlet boundaries a hydrostatic pressure and a gas saturation of zero a
 *
 * This problem uses the \ref TwoPModel model.
 */
template<class TypeTag>
class InjectionProblem2P : public PorousMediumFlowProblem<TypeTag>
{
    using ParentType = PorousMediumFlowProblem<TypeTag>;
94
95
96
97
98
99
100
101
    using GridView = GetPropType<TypeTag, Properties::GridView>;
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices;
    using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
    using BoundaryTypes = GetPropType<TypeTag, Properties::BoundaryTypes>;
    using FVGridGeometry = GetPropType<TypeTag, Properties::FVGridGeometry>;
    using FVElementGeometry = typename GetPropType<TypeTag, Properties::FVGridGeometry>::LocalView;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

    enum { dimWorld = GridView::dimensionworld };
    using Element = typename GridView::template Codim<0>::Entity;
    using GlobalPosition = typename Element::Geometry::GlobalCoordinate;

public:
    InjectionProblem2P(std::shared_ptr<const FVGridGeometry> fvGridGeometry)
    : ParentType(fvGridGeometry)
    {
        // initialize the tables of the fluid system
        FluidSystem::init(/*tempMin=*/273.15,
                /*tempMax=*/423.15,
                /*numTemp=*/50,
                /*pMin=*/0.0,
                /*pMax=*/30e6,
                /*numP=*/300);

        // name of the problem and output file
        // getParam<TYPE>("GROUPNAME.PARAMNAME") reads and sets parameter PARAMNAME
        // of type TYPE given in the group GROUPNAME from the input file
        name_ = getParam<std::string>("Problem.Name");
        // depth of the aquifer, units: m
        aquiferDepth_ = getParam<Scalar>("Problem.AquiferDepth");
        // the duration of the injection, units: second
        injectionDuration_ = getParamFromGroup<Scalar>("Problem","InjectionDuration");
        //TODO: Task 2: Set a variable "TotalAreaSpecificInflow" to read in a value from the parameter tree via the input file
        //TODO: Task 3: Set a default value for the above parameter.
        //TODO: Task 4: Provide output describing where the parameter value comes from using parameter bool functions.
    }

    /*!
     * \name Problem parameters
     */
    // \{

    /*!
     * \brief Returns the problem name
     *
     * This is used as a prefix for files generated by the simulation.
     */
    std::string name() const
    { return name_+"-2p"; }

    /*!
     * \brief Returns the temperature \f$ K \f$
     */
    Scalar temperature() const
    {
        return 273.15 + 30; // [K]
    }

    // \}

    /*!
     * \name Boundary conditions
     */
    // \{

    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param globalPos The position for which the bc type should be evaluated
     */
    BoundaryTypes boundaryTypesAtPos(const GlobalPosition &globalPos) const
    {
        BoundaryTypes bcTypes;
        // set the left of the domain (with the global position in "0 = x" direction as a Dirichlet boundary
        if (globalPos[0] < eps_)
            bcTypes.setAllDirichlet();
        // set all other as Neumann boundaries
        else
            bcTypes.setAllNeumann();

        return bcTypes;
    }

    /*!
     * \brief Evaluates the boundary conditions for a Dirichlet
     *        boundary segment
     *
     * \param globalPos The global position
     */
    PrimaryVariables dirichletAtPos(const GlobalPosition &globalPos) const
    {
        return initialAtPos(globalPos);
    }

    /*!
     * \brief Evaluate the boundary conditions for a neumann
     *        boundary segment.
     *
     * \param globalPos The position of the integration point of the boundary segment.
     */
    PrimaryVariables neumannAtPos(const GlobalPosition &globalPos) const
    {
        // initialize values to zero, i.e. no-flow Neumann boundary conditions
        PrimaryVariables values(0.0);

        // if we are inside the injection zone set inflow Neumann boundary conditions
        // using < boundary + eps_ or > boundary - eps_ is safer for floating point comparisons
        // than using <= or >= as it is robust with regard to imprecision introduced by rounding errors.
        if (time_ < injectionDuration_
            && globalPos[1] < 15 + eps_ && globalPos[1] > 7 - eps_ && globalPos[0] > 0.9*this->fvGridGeometry().bBoxMax()[0])
        {
            // inject nitrogen. negative values mean injection
            // units kg/(s*m^2)
            //TODO: Task 2: incorporate "totalAreaSpecificInflow_"  into the injection boundary condition
            values[Indices::conti0EqIdx + FluidSystem::N2Idx]= -1e-4/FluidSystem::molarMass(FluidSystem::N2Idx);
            values[Indices::conti0EqIdx + FluidSystem::H2OIdx] = 0.0;
        }

        return values;
    }

    // \}


    /*!
     * \name Volume terms
     */
    // \{

    /*!
     * \brief Evaluate the initial value for a control volume.
     *
     * \param globalPos The position for which the initial condition should be evaluated
     */
    PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const
    {
        PrimaryVariables values(0.0);

        // get the water density at atmospheric conditions
        const Scalar densityW = FluidSystem::H2O::liquidDensity(temperature(), 1.0e5);

        // assume an intially hydrostatic liquid pressure profile
        // note: we subtract rho_w*g*h because g is defined negative
        const Scalar pw = 1.0e5 - densityW*this->gravity()[dimWorld-1]*(aquiferDepth_ - globalPos[dimWorld-1]);

        values[Indices::pressureIdx] = pw;
        values[Indices::saturationIdx] = 0.0;

        return values;
    }

    // \}

    //! set the time for the time dependent boundary conditions (called from main)
    void setTime(Scalar time)
    { time_ = time; }

private:
    static constexpr Scalar eps_ = 1e-6;
    std::string name_; //! Problem name
    Scalar aquiferDepth_; //! Depth of the aquifer in m
    Scalar injectionDuration_; //! Duration of the injection in seconds
    //TODO: Task 2: Set a variable "totalAreaSpecificInflow_" to read in a value from the parameter tree via the input file
    Scalar time_;
};

} //end namespace Dumux

#endif