freeflowsubproblem.hh 11.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 * \ingroup NavierStokesTests
 * \brief A simple Stokes test problem for the staggered grid (Navier-)Stokes model.
 */
#ifndef DUMUX_STOKES1P2C_SUBPROBLEM_HH
#define DUMUX_STOKES1P2C_SUBPROBLEM_HH

#include <dumux/freeflow/navierstokes/problem.hh>
28
#include <dumux/common/properties.hh>
29

30
namespace Dumux {
31
32
33
34
35
36
37
38

/*!
 * \ingroup NavierStokesTests
 * \brief  Test problem for the one-phase compositional (Navier-) Stokes problem.
 *
 * Horizontal flow from left to right with a parabolic velocity profile.
 */
template <class TypeTag>
39
class FreeFlowSubProblem : public NavierStokesProblem<TypeTag>
40
41
42
{
    using ParentType = NavierStokesProblem<TypeTag>;

43
    using GridView = typename GetPropType<TypeTag, Properties::GridGeometry>::GridView;
44
45
46
47
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
    using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices;
    using BoundaryTypes = GetPropType<TypeTag, Properties::BoundaryTypes>;
48

49
    using FVGridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
50
51
52
    using FVElementGeometry = typename FVGridGeometry::LocalView;
    using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace;
    using Element = typename GridView::template Codim<0>::Entity;
53
54
55
    using ElementVolumeVariables = typename GetPropType<TypeTag, Properties::GridVolumeVariables>::LocalView;
    using ElementFaceVariables = typename GetPropType<TypeTag, Properties::GridFaceVariables>::LocalView;
    using FluidState = GetPropType<TypeTag, Properties::FluidState>;
56
57
58

    using GlobalPosition = typename Element::Geometry::GlobalCoordinate;

59
60
    using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
    using NumEqVector = GetPropType<TypeTag, Properties::NumEqVector>;
61

62
    using CouplingManager = GetPropType<TypeTag, Properties::CouplingManager>;
63
64
    using TimeLoopPtr = std::shared_ptr<TimeLoop<Scalar>>;

65
    static constexpr bool useMoles = GetPropType<TypeTag, Properties::ModelTraits>::useMoles();
66

67
    static constexpr auto dim = GetPropType<TypeTag, Properties::ModelTraits>::dim();
68
    static constexpr auto transportCompIdx = 1;
69
70

public:
71
    FreeFlowSubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry, std::shared_ptr<CouplingManager> couplingManager)
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    : ParentType(fvGridGeometry, "Stokes"), eps_(1e-6), couplingManager_(couplingManager)
    {
        velocity_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.Velocity");
        pressure_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.Pressure");
        moleFraction_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.MoleFraction");
    }

   /*!
     * \name Problem parameters
     */
    // \{

   /*!
     * \brief Return the temperature within the domain in [K].
     */
    Scalar temperature() const
    { return 293.15; }

   /*!
     * \brief Return the sources within the domain.
     *
     * \param globalPos The global position
     */
    NumEqVector sourceAtPos(const GlobalPosition &globalPos) const
    { return NumEqVector(0.0); }

    // \}
   /*!
     * \name Boundary conditions
     */
    // \{

    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param element The finite element
     * \param scvf The sub control volume face
     */
    BoundaryTypes boundaryTypes(const Element& element,
                                const SubControlVolumeFace& scvf) const
    {
        BoundaryTypes values;

        const auto& globalPos = scvf.center();

        if(onLeftBoundary_(globalPos))
        {
120
            values.setDirichlet(Indices::conti0EqIdx + 1);
121
122
123
124
125
126
            values.setDirichlet(Indices::velocityXIdx);
            values.setDirichlet(Indices::velocityYIdx);
        }
        else if(onRightBoundary_(globalPos))
        {
            values.setDirichlet(Indices::pressureIdx);
127
            values.setOutflow(Indices::conti0EqIdx + 1);
128
129
130
131
132
        }
        else
        {
            values.setDirichlet(Indices::velocityXIdx);
            values.setDirichlet(Indices::velocityYIdx);
133
134
            values.setNeumann(Indices::conti0EqIdx);
            values.setNeumann(Indices::conti0EqIdx + 1);
135
136
137
138
        }

        if (couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf))
        {
139
140
            values.setCouplingNeumann(Indices::conti0EqIdx);
            values.setCouplingNeumann(Indices::conti0EqIdx + 1);
141
            values.setCouplingNeumann(Indices::momentumYBalanceIdx);
142
            values.setBeaversJoseph(Indices::momentumXBalanceIdx);
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
        }

        return values;
    }

    /*!
     * \brief Evaluate the boundary conditions for a Dirichlet control volume.
     *
     * \param element The element
     * \param scvf The subcontrolvolume face
     */
    PrimaryVariables dirichletAtPos(const GlobalPosition& pos) const
    {
        PrimaryVariables values(0.0);
        values = initialAtPos(pos);

        return values;
    }

    /*!
     * \brief Evaluate the boundary conditions for a Neumann control volume.
     *
     * \param element The element for which the Neumann boundary condition is set
     * \param fvGeomentry The fvGeometry
     * \param elemVolVars The element volume variables
     * \param elemFaceVars The element face variables
     * \param scvf The boundary sub control volume face
     */
    NumEqVector neumann(const Element& element,
                        const FVElementGeometry& fvGeometry,
                        const ElementVolumeVariables& elemVolVars,
                        const ElementFaceVariables& elemFaceVars,
                        const SubControlVolumeFace& scvf) const
    {
        PrimaryVariables values(0.0);

        if(couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf))
        {
181
            values[Indices::momentumYBalanceIdx] = couplingManager().couplingData().momentumCouplingCondition(element, fvGeometry, elemVolVars, elemFaceVars, scvf);
182

183
            const auto massFlux = couplingManager().couplingData().massCouplingCondition(element, fvGeometry, elemVolVars, elemFaceVars, scvf);
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
            values[Indices::conti0EqIdx] = massFlux[0];
            values[Indices::conti0EqIdx + 1] = massFlux[1];
        }
        return values;
    }

    // \}

    /*!
     * \brief Set the coupling manager
     */
    void setCouplingManager(std::shared_ptr<CouplingManager> cm)
    { couplingManager_ = cm; }

    /*!
     * \brief Get the coupling manager
     */
    const CouplingManager& couplingManager() const
    { return *couplingManager_; }

   /*!
     * \name Volume terms
     */
    // \{

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    /*!
      * \brief Evaluate the initial value for a control volume.
      *
      * \param globalPos The global position
      */
     PrimaryVariables initialAtPos(const GlobalPosition& globalPos) const
     {
         PrimaryVariables values(0.0);

         // This is only an approximation of the actual hydorostatic pressure gradient.
         // Air is compressible (the density depends on pressure), thus the actual
         // vertical pressure profile is non-linear.
         // This discrepancy can lead to spurious flows at the outlet if the inlet
         // velocity is chosen too small.
         FluidState fluidState;
         updateFluidStateForBC_(fluidState, pressure_);
         const Scalar density = FluidSystem::density(fluidState, 0);
226
         values[Indices::pressureIdx] = pressure_ - density*this->gravity()[1]*(this->gridGeometry().bBoxMax()[1] - globalPos[1]);
227
228
229
230


         // gravity has negative sign
         values[Indices::conti0EqIdx + 1] = moleFraction_;
231
232
         values[Indices::velocityXIdx] = 4.0 * velocity_ * (globalPos[1] - this->gridGeometry().bBoxMin()[1])
                                                         * (this->gridGeometry().bBoxMax()[1] - globalPos[1])
233
234
235
236
                                                         / (height_() * height_());

         return values;
     }
237
238
239
240
241
242
243

    void setTimeLoop(TimeLoopPtr timeLoop)
    { timeLoop_ = timeLoop; }

    /*!
     * \brief Returns the intrinsic permeability of required as input parameter for the Beavers-Joseph-Saffman boundary condition
     */
244
    Scalar permeability(const Element& element, const SubControlVolumeFace& scvf) const
245
    {
246
        return couplingManager().couplingData().darcyPermeability(element, scvf);
247
248
249
250
251
252
253
254
255
256
257
258
259
260
    }

    /*!
     * \brief Returns the alpha value required as input parameter for the Beavers-Joseph-Saffman boundary condition
     */
    Scalar alphaBJ(const SubControlVolumeFace& scvf) const
    {
        return couplingManager().problem(CouplingManager::darcyIdx).spatialParams().beaversJosephCoeffAtPos(scvf.center());
    }

    // \}

private:
    bool onLeftBoundary_(const GlobalPosition &globalPos) const
261
    { return globalPos[0] < this->gridGeometry().bBoxMin()[0] + eps_; }
262
263

    bool onRightBoundary_(const GlobalPosition &globalPos) const
264
    { return globalPos[0] > this->gridGeometry().bBoxMax()[0] - eps_; }
265
266

    bool onLowerBoundary_(const GlobalPosition &globalPos) const
267
    { return globalPos[1] < this->gridGeometry().bBoxMin()[1] + eps_; }
268
269

    bool onUpperBoundary_(const GlobalPosition &globalPos) const
270
    { return globalPos[1] > this->gridGeometry().bBoxMax()[1] - eps_; }
271
272
273
274
275

    //! \brief updates the fluid state to obtain required quantities for IC/BC
    void updateFluidStateForBC_(FluidState& fluidState, const Scalar pressure) const
    {
        fluidState.setTemperature(temperature());
276
277
278
279
        fluidState.setPressure(0, pressure);
        fluidState.setSaturation(0, 1.0);
        fluidState.setMoleFraction(0, 1, moleFraction_);
        fluidState.setMoleFraction(0, 0, 1.0 - moleFraction_);
280
281

        typename FluidSystem::ParameterCache paramCache;
282
        paramCache.updatePhase(fluidState, 0);
283

284
285
        const Scalar density = FluidSystem::density(fluidState, paramCache, 0);
        fluidState.setDensity(0, density);
286

287
288
        const Scalar molarDensity = FluidSystem::molarDensity(fluidState, paramCache, 0);
        fluidState.setMolarDensity(0, molarDensity);
289

290
291
        const Scalar enthalpy = FluidSystem::enthalpy(fluidState, paramCache, 0);
        fluidState.setEnthalpy(0, enthalpy);
292
293
294
    }
    // the height of the free-flow domain
    const Scalar height_() const
295
    { return this->gridGeometry().bBoxMax()[1] - this->gridGeometry().bBoxMin()[1]; }
296
297
298
299
300
301
302
303
304
305
306

    Scalar eps_;

    Scalar velocity_;
    Scalar pressure_;
    Scalar moleFraction_;

    TimeLoopPtr timeLoop_;

    std::shared_ptr<CouplingManager> couplingManager_;
};
307
308

} //end namespace Dumux
309
310

#endif // DUMUX_STOKES1P2C_SUBPROBLEM_HH