ex_models_pmproblem.hh 14.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
 * \brief A simple Darcy test problem (cell-centered finite volume method).
 */
#ifndef DUMUX_DARCY_SUBPROBLEM_HH
#define DUMUX_DARCY_SUBPROBLEM_HH

#include <dune/grid/yaspgrid.hh>

29
#include <dumux/discretization/cctpfa.hh>
30
#include <dumux/io/gnuplotinterface.hh>
31
#include <dumux/material/fluidsystems/1padapter.hh>
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#include <dumux/material/fluidsystems/h2oair.hh>
#include <dumux/material/fluidmatrixinteractions/diffusivityconstanttortuosity.hh>

#include <dumux/porousmediumflow/problem.hh>

#include <dumux/porousmediumflow/1pnc/model.hh>
#include "../1pspatialparams.hh"

namespace Dumux
{
template <class TypeTag>
class DarcySubProblem;

namespace Properties
{
47
48
// Create new type tags
namespace TTag {
49
struct DarcyOnePNC { using InheritsFrom = std::tuple<OnePNC, CCTpfaModel>; };
50
} // end namespace TTag
51
52

// Set the problem property
53
template<class TypeTag>
54
struct Problem<TypeTag, TTag::DarcyOnePNC> { using type = Dumux::DarcySubProblem<TypeTag>; };
55
56

// The fluid system
57
template<class TypeTag>
58
struct FluidSystem<TypeTag, TTag::DarcyOnePNC>
59
{
60
    using H2OAir = FluidSystems::H2OAir<GetPropType<TypeTag, Properties::Scalar>>;
61
62
    using type = FluidSystems::OnePAdapter<H2OAir, H2OAir::gasPhaseIdx>;
};
63
64

// Use moles
65
template<class TypeTag>
66
struct UseMoles<TypeTag, TTag::DarcyOnePNC> { static constexpr bool value = true; };
67
68

// Do not replace one equation with a total mass balance
69
template<class TypeTag>
70
struct ReplaceCompEqIdx<TypeTag, TTag::DarcyOnePNC> { static constexpr int value = 3; };
71
72

//! Use a model with constant tortuosity for the effective diffusivity
73
SET_TYPE_PROP(DarcyOnePNC, EffectiveDiffusivityModel,
74
              DiffusivityConstantTortuosity<GetPropType<TypeTag, Properties::Scalar>>);
75
76

// Set the grid type
77
template<class TypeTag>
78
struct Grid<TypeTag, TTag::DarcyOnePNC> { using type = Dune::YaspGrid<2>; };
79
80

// Set the spatial paramaters type
81
template<class TypeTag>
82
struct SpatialParams<TypeTag, TTag::DarcyOnePNC> { using type = OnePSpatialParams<TypeTag>; };
83
84
85
86
87
88
}

template <class TypeTag>
class DarcySubProblem : public PorousMediumFlowProblem<TypeTag>
{
    using ParentType = PorousMediumFlowProblem<TypeTag>;
89
90
91
92
93
94
95
    using GridView = GetPropType<TypeTag, Properties::GridView>;
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
    using NumEqVector = GetPropType<TypeTag, Properties::NumEqVector>;
    using BoundaryTypes = GetPropType<TypeTag, Properties::BoundaryTypes>;
    using FVElementGeometry = typename GetPropType<TypeTag, Properties::FVGridGeometry>::LocalView;
96
97
    using SubControlVolume = typename FVElementGeometry::SubControlVolume;
    using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace;
98
    using FVGridGeometry = GetPropType<TypeTag, Properties::FVGridGeometry>;
99
100

    // copy some indices for convenience
101
    using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices;
102
103
104
105
106
107
108
109
    enum {
        // grid and world dimension
        dim = GridView::dimension,
        dimworld = GridView::dimensionworld,

        // primary variable indices
        conti0EqIdx = Indices::conti0EqIdx,
        pressureIdx = Indices::pressureIdx,
110
111
        phaseIdx = 0,
        transportCompIdx = 1
112
113
114
115
116
    };

    using Element = typename GridView::template Codim<0>::Entity;
    using GlobalPosition = Dune::FieldVector<Scalar, dimworld>;

117
    using CouplingManager = GetPropType<TypeTag, Properties::CouplingManager>;
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    using TimeLoopPtr = std::shared_ptr<TimeLoop<Scalar>>;

public:
    DarcySubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry,
                   std::shared_ptr<CouplingManager> couplingManager)
    : ParentType(fvGridGeometry, "Darcy"), eps_(1e-7), couplingManager_(couplingManager)
    {
        moleFraction_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.MoleFraction");

        // initialize output file
        plotFluxes_ = getParamFromGroup<bool>(this->paramGroup(), "Problem.PlotFluxes", false);
        plotStorage_ = getParamFromGroup<bool>(this->paramGroup(), "Problem.PlotStorage", false);
        storageFileName_ = "storage_" + getParam<std::string>("Problem.Name") + "_" + this->name() + ".csv";
        storageFile_.open(storageFileName_);
        storageFile_ << "#Time[s]" << ";"
                     << "WaterMass[kg]" << ";"
                     << "WaterMassLoss[kg]" << ";"
                     << "EvaporationRate[mm/d]"
                     << std::endl;
    }

    /*!
     * \name Simulation steering
     */
    // \{

    /*!
     * \brief Initialize the problem.
     */
    template<class SolutionVector, class GridVariables>
    void init(const SolutionVector& curSol,
              const GridVariables& gridVariables)
    { }

    template<class SolutionVector, class GridVariables>
    void postTimeStep(const SolutionVector& curSol,
                      const GridVariables& gridVariables)

    {
        evaluateWaterMassStorageTerm(curSol, gridVariables);
        evaluateInterfaceFluxes(curSol, gridVariables);

        gnuplotStorage_.resetPlot();
        gnuplotStorage_.setDatafileSeparator(';');
        gnuplotStorage_.setXlabel("time [d]");
        gnuplotStorage_.setXRange(0.0, getParam<Scalar>("TimeLoop.TEnd"));
        gnuplotStorage_.setYlabel("evaporation rate [mm/d]");
        gnuplotStorage_.setOption("set yrange [0.0:]");
        gnuplotStorage_.setOption("set y2label 'cumulative mass loss'");
        gnuplotStorage_.setOption("set y2range [0.0:0.5]");
        gnuplotStorage_.setOption("set y2range [0.0:0.5]");
        gnuplotStorage_.addFileToPlot(storageFileName_, "using 1:4 with lines title 'evaporation rate'");
        gnuplotStorage_.addFileToPlot(storageFileName_, "using 1:3 axes x1y2 with lines title 'cumulative mass loss'");
        if (plotStorage_)
            gnuplotStorage_.plot("temp");
    }

    template<class SolutionVector, class GridVariables>
    Scalar evaluateWaterMassStorageTerm(const SolutionVector& curSol,
                                        const GridVariables& gridVariables)

    {
        // compute the mass in the entire domain
        Scalar waterMass = 0.0;

        for (const auto& element : elements(this->fvGridGeometry().gridView()))
        {
            auto fvGeometry = localView(this->fvGridGeometry());
            fvGeometry.bindElement(element);

            auto elemVolVars = localView(gridVariables.curGridVolVars());
            elemVolVars.bindElement(element, fvGeometry, curSol);

            for (auto&& scv : scvs(fvGeometry))
            {
Timo Koch's avatar
Timo Koch committed
193
                // const auto& volVars = elemVolVars[scv];
194
195
                // insert calculation of the water mass here
                waterMass += 0.0;
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
            }
        }

        Scalar cumMassLoss = initialWaterContent_ - waterMass;
        Scalar evaporationRate = (lastWaterMass_ - waterMass) * 86400
                                 / (this->fvGridGeometry().bBoxMax()[0] - this->fvGridGeometry().bBoxMin()[0])
                                 / timeLoop_->timeStepSize();
        lastWaterMass_ = waterMass;

        storageFile_ << timeLoop_->time() << ";"
                     << waterMass << ";"
                     << cumMassLoss << ";"
                     << evaporationRate
                     << std::endl;

        return waterMass;
    }

    template<class SolutionVector, class GridVariables>
    void evaluateInterfaceFluxes(const SolutionVector& curSol,
                                 const GridVariables& gridVariables)

    {
        std::vector<Scalar> x;
        std::vector<Scalar> y;

        for (const auto& element : elements(this->fvGridGeometry().gridView()))
        {
            auto fvGeometry = localView(this->fvGridGeometry());
            fvGeometry.bindElement(element);

            auto elemVolVars = localView(gridVariables.curGridVolVars());
            elemVolVars.bindElement(element, fvGeometry, curSol);

            for (auto&& scvf : scvfs(fvGeometry))
            {
                if (!couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf))
                    continue;

                NumEqVector flux(0.0); // use "massCouplingCondition" from the couplingManager here

                x.push_back(scvf.center()[0]);
                y.push_back(flux[transportCompIdx]);
            }
        }

        gnuplotInterfaceFluxes_.resetPlot();
        gnuplotInterfaceFluxes_.setXlabel("x-position [m]");
        gnuplotInterfaceFluxes_.setXRange(this->fvGridGeometry().bBoxMin()[0], this->fvGridGeometry().bBoxMax()[0]);
        gnuplotInterfaceFluxes_.setYlabel("flux [kg/(m^2 s)]");
        gnuplotInterfaceFluxes_.setYRange(-5e-4, 0.0);
        gnuplotInterfaceFluxes_.setOption("set label 'time: " + std::to_string(timeLoop_->time()/86400.) + "d' at graph 0.8,0.8 ");
        std::string fluxFileName = "flux_" + std::to_string(timeLoop_->timeStepIndex()) +
                                   "_" + getParam<std::string>("Problem.Name") + "_" + this->name() + ".csv";
        gnuplotInterfaceFluxes_.addDataSetToPlot(x, y, fluxFileName, "with lines title 'water mass flux'");
        if (plotFluxes_)
            gnuplotInterfaceFluxes_.plot("flux_" + std::to_string(timeLoop_->timeStepIndex()));
    }

    /*!
     * \name Problem parameters
     */
    // \{

    /*!
     * \brief Return the temperature within the domain in [K].
     *
     */
    Scalar temperature() const
    { return 293.15; }
    // \}

    /*!
     * \name Boundary conditions
     */
    // \{

    /*!
      * \brief Specifies which kind of boundary condition should be
      *        used for which equation on a given boundary control volume.
      *
      * \param element The element
      * \param scvf The boundary sub control volume face
      */
    BoundaryTypes boundaryTypes(const Element& element, const SubControlVolumeFace& scvf) const
    {
        BoundaryTypes values;
        values.setAllNeumann();

        if (couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf))
            values.setAllCouplingNeumann();

        return values;
    }

    /*!
     * \brief Evaluate the boundary conditions for a Neumann control volume.
     *
     * \param element The element for which the Neumann boundary condition is set
     * \param fvGeomentry The fvGeometry
     * \param elemVolVars The element volume variables
     * \param scvf The boundary sub control volume face
     *
     * For this method, the \a values variable stores primary variables.
     */
    template<class ElementVolumeVariables>
    NumEqVector neumann(const Element& element,
                        const FVElementGeometry& fvGeometry,
                        const ElementVolumeVariables& elemVolVars,
                        const SubControlVolumeFace& scvf) const
    {
        NumEqVector values(0.0);

        if (couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf))
310
            values = couplingManager().couplingData().massCouplingCondition(element, fvGeometry, elemVolVars, scvf);
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

        return values;
    }

    // \}

    /*!
     * \name Volume terms
     */
    // \{
    /*!
     * \brief Evaluate the source term for all phases within a given
     *        sub-control-volume.
     *
     * \param element The element for which the source term is set
     * \param fvGeomentry The fvGeometry
     * \param elemVolVars The element volume variables
     * \param scv The subcontrolvolume
     */
    template<class ElementVolumeVariables>
331
    NumEqVector source(const Element& element,
332
333
                       const FVElementGeometry& fvGeometry,
                       const ElementVolumeVariables& elemVolVars,
334
                       const SubControlVolume& scv) const
335
336
337
338
339
340
341
342
343
344
345
346
    { return NumEqVector(0.0); }

    // \}

    /*!
     * \brief Evaluate the initial value for a control volume.
     *
     * \param element The element
     *
     * For this method, the \a priVars parameter stores primary
     * variables.
     */
347
    PrimaryVariables initialAtPos(const GlobalPosition& globalPos) const
348
    {
349
350
        static const Scalar stokesPressure = getParamFromGroup<Scalar>("Stokes", "Problem.Pressure");

351
        PrimaryVariables values(0.0);
352
        values[Indices::pressureIdx] = stokesPressure;
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
        values[transportCompIdx] = moleFraction_;
        return values;
    }

    // \}

    //! Set the coupling manager
    void setCouplingManager(std::shared_ptr<CouplingManager> cm)
    { couplingManager_ = cm; }

    //! Get the coupling manager
    const CouplingManager& couplingManager() const
    { return *couplingManager_; }

    void setTimeLoop(TimeLoopPtr timeLoop)
    { timeLoop_ = timeLoop; }

private:
    bool onLeftBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[0] < this->fvGridGeometry().bBoxMin()[0] + eps_; }

    bool onRightBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_; }

    bool onLowerBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[1] < this->fvGridGeometry().bBoxMin()[1] + eps_; }

    bool onUpperBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[1] > this->fvGridGeometry().bBoxMax()[1] - eps_; }

    Scalar eps_;
    Scalar moleFraction_;

    Scalar initialWaterContent_ = 0.0;
    Scalar lastWaterMass_ = 0.0;

    TimeLoopPtr timeLoop_;
    std::shared_ptr<CouplingManager> couplingManager_;

    std::string storageFileName_;
    std::ofstream storageFile_;
    bool plotFluxes_;
    bool plotStorage_;
    Dumux::GnuplotInterface<Scalar> gnuplotInterfaceFluxes_;
    Dumux::GnuplotInterface<Scalar> gnuplotStorage_;
};
} //end namespace

#endif //DUMUX_DARCY_SUBPROBLEM_HH