2p2cproblem.hh 9.05 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
22
 * \brief Tutorial problem for a fully coupled two phase-two component box model.
23
24
25
26
27
28
29
 */
#ifndef DUMUX_EXERCISE_THREE_B_PROBLEM_HH
#define DUMUX_EXERCISE_THREE_B_PROBLEM_HH

// The numerical model
#include <dumux/porousmediumflow/2p2c/model.hh>

30
// The box discretization
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include <dumux/discretization/box/properties.hh>

// The base porous media box problem
#include <dumux/porousmediumflow/problem.hh>

// Spatially dependent parameters
#include "spatialparams.hh"

// The fluid system that is created in this exercise
#include "fluidsystems/h2omycompressiblecomponent.hh"

namespace Dumux{
// Forward declaration of the problem class
template <class TypeTag> class ExerciseThreeProblemTwoPTwoC;

namespace Properties {
// Create a new type tag for the problem
48
NEW_TYPE_TAG(ExerciseThreeTwoPTwoCTypeTag, INHERITS_FROM(TwoPTwoC, BoxModel));
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

// Set the "Problem" property
SET_TYPE_PROP(ExerciseThreeTwoPTwoCTypeTag, Problem, ExerciseThreeProblemTwoPTwoC<TypeTag>);

// Set the spatial parameters
SET_TYPE_PROP(ExerciseThreeTwoPTwoCTypeTag, SpatialParams,
              ExerciseThreeSpatialParams<typename GET_PROP_TYPE(TypeTag, FVGridGeometry),
                                         typename GET_PROP_TYPE(TypeTag, Scalar)>);

// Set grid and the grid creator to be used
#if HAVE_DUNE_ALUGRID
SET_TYPE_PROP(ExerciseThreeTwoPTwoCTypeTag, Grid, Dune::ALUGrid</*dim=*/2, 2, Dune::cube, Dune::nonconforming>);
#elif HAVE_UG
SET_TYPE_PROP(ExerciseThreeTwoPTwoCTypeTag, Grid, Dune::UGGrid<2>);
#else
SET_TYPE_PROP(ExerciseThreeTwoPTwoCTypeTag, Grid, Dune::YaspGrid<2>);
#endif // HAVE_DUNE_ALUGRID

 // The fluid system property
SET_PROP(ExerciseThreeTwoPTwoCTypeTag, FluidSystem)
{
private:
    using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar);
public:
    using type = FluidSystems::H2OMyCompressibleComponent<Scalar>;
};

}

/*!
 * \ingroup TwoPBoxModel
 *
81
 * \brief  Tutorial problem for a fully coupled two phase-two component box model.
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
 */
template <class TypeTag>
class ExerciseThreeProblemTwoPTwoC : public PorousMediumFlowProblem<TypeTag>
{
    using ParentType = PorousMediumFlowProblem<TypeTag>;
    using GridView = typename GET_PROP_TYPE(TypeTag, GridView);
    using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar);

    // Grid dimension
    enum { dim = GridView::dimension,
           dimWorld = GridView::dimensionworld
    };
    using Element = typename GridView::template Codim<0>::Entity;
    using GlobalPosition = typename Element::Geometry::GlobalCoordinate;

    // Dumux specific types
    using Indices = typename GET_PROP_TYPE(TypeTag, ModelTraits)::Indices;
    using PrimaryVariables = typename GET_PROP_TYPE(TypeTag, PrimaryVariables);
    using BoundaryTypes = typename GET_PROP_TYPE(TypeTag, BoundaryTypes);
    using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry);
    using FVElementGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry)::LocalView;
    using FluidSystem = typename GET_PROP_TYPE(TypeTag, FluidSystem);

public:
    ExerciseThreeProblemTwoPTwoC(std::shared_ptr<const FVGridGeometry> fvGridGeometry)
    : ParentType(fvGridGeometry)
        , eps_(3e-6)
    {
#if !(HAVE_DUNE_ALUGRID || HAVE_UG)
111
        std::cout << "If you want to use simplices instead of cubes, install and use dune-ALUGrid or UGGrid." << std::endl;
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#endif // !(HAVE_DUNE_ALUGRID || HAVE_UG)

        // initialize the fluid system
        FluidSystem::init();

        // set the depth of the bottom of the reservoir
        depthBOR_ = this->fvGridGeometry().bBoxMax()[dimWorld-1];
    }

    /*!
     * \name Problem parameters
     */
    // \{

    /*!
     * \brief Returns the temperature \f$ K \f$
     */
    Scalar temperature() const
    { return 283.15; }

     /*!
     * \name Boundary conditions
     */
    // \{

    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param bcTypes The boundary types for the conservation equations
     * \param globalPos The position for which the bc type should be evaluated
     */
    BoundaryTypes boundaryTypesAtPos(const GlobalPosition &globalPos) const
    {
         BoundaryTypes bcTypes;

        if (globalPos[0] < eps_ || globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_)
           bcTypes.setAllDirichlet();
        else
            bcTypes.setAllNeumann();

        return bcTypes;
    }

    /*!
     * \brief Evaluates the boundary conditions for a Dirichlet
     *        boundary segment
     *
     * \param globalPos The global position
     */
    PrimaryVariables dirichletAtPos(const GlobalPosition &globalPos) const
    {
164
165
        // use initial as Dirichlet conditions
        return initialAtPos(globalPos);
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    }

    /*!
     * \brief Evaluate the boundary conditions for a neumann
     *        boundary segment.
     *
     * \param values Stores the Neumann values for the conservation equations in
     *               \f$ [ \textnormal{unit of conserved quantity} / (m^(dim-1) \cdot s )] \f$
     * \param globalPos The position of the integration point of the boundary segment.
     *
     * For this method, the \a values parameter stores the mass flux
     * in normal direction of each phase. Negative values mean influx.
     */
    PrimaryVariables neumannAtPos(const GlobalPosition &globalPos) const
    {
        // initialize values to zero, i.e. no-flow Neumann boundary conditions
        PrimaryVariables values(0.0);
183

184
        Scalar up = this->fvGridGeometry().bBoxMax()[dimWorld-1];
185
186
187
        // extraction of oil (30 g/m/s) on a segment of the upper boundary
        if (globalPos[dimWorld-1] > up - eps_ && globalPos[0] > 20 && globalPos[0] < 40)
        {
188
189
190
            // we solve for the mole balance, so we have to divide by the molar mass
            values[Indices::conti0EqIdx + FluidSystem::H2OIdx] = 0;
            values[Indices::conti0EqIdx + FluidSystem::NAPLIdx] = -3e-2/FluidSystem::MyCompressibleComponent::molarMass();
191
192
193
        }
        else
        {
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
            // no-flow on the remaining Neumann-boundaries.
            values[Indices::conti0EqIdx + FluidSystem::H2OIdx] = 0;
            values[Indices::conti0EqIdx + FluidSystem::NAPLIdx] = 0;
        }

        return values;
    }

    // \}

    /*!
     * \name Volume terms
     */
    // \{

    /*!
     * \brief Evaluate the initial value for a control volume.
     *
     * \param globalPos The position for which the initial condition should be evaluated
     *
     * For this method, the \a values parameter stores primary
     * variables.
     */
    PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const

    {
        PrimaryVariables values(0.0);
221
222
223
224

        // tell the primary variables the phase state, i.e. which phase/phases
        // is/are present, because this changes the meaning of the primary variable
        // value at the index Indices::switchIdx
225
226
        values.setState(Indices::firstPhaseOnly);

227
        // use hydrostatic pressure distribution with 2 bar at the top and zero saturation
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
        values[Indices::pressureIdx] = 200.0e3 + 9.81*1000*(depthBOR_ - globalPos[dimWorld-1]); // 200 kPa = 2 bar
        values[Indices::switchIdx] = 0.0;

        return values;
    }

    // \}

    /*!
     * \brief Returns the source term
     *
     * \param values Stores the source values for the conservation equations in
     *               \f$ [ \textnormal{unit of primary variable} / (m^\textrm{dim} \cdot s )] \f$
     * \param globalPos The global position
     */
    PrimaryVariables sourceAtPos(const GlobalPosition &globalPos) const
    {
245
        // we do not define any sources
246
247
248
249
250
251
        PrimaryVariables values(0.0);
        return values;
    }


private:
252
253
    Scalar eps_; //! small epsilon value
    Scalar depthBOR_; //! depth at the bottom of the reservoir
254
};
255
256

} // end namespace Dumux
257
258

#endif