freeflowsubproblem.hh 11.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 * \ingroup NavierStokesTests
 * \brief A simple Stokes test problem for the staggered grid (Navier-)Stokes model.
 */
#ifndef DUMUX_STOKES1P2C_SUBPROBLEM_HH
#define DUMUX_STOKES1P2C_SUBPROBLEM_HH

27
#include <dumux/common/properties.hh>
28
#include <dumux/common/timeloop.hh>
29

30
#include <dumux/freeflow/navierstokes/problem.hh>
31

32
namespace Dumux {
33
34
35
36
37
38
39
/*!
 * \ingroup NavierStokesTests
 * \brief  Test problem for the one-phase compositional (Navier-) Stokes problem.
 *
 * Horizontal flow from left to right with a parabolic velocity profile.
 */
template <class TypeTag>
40
class FreeFlowSubProblem : public NavierStokesProblem<TypeTag>
41
42
43
{
    using ParentType = NavierStokesProblem<TypeTag>;

44
    using GridView = typename GetPropType<TypeTag, Properties::GridGeometry>::GridView;
45
46
47
48
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
    using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices;
    using BoundaryTypes = GetPropType<TypeTag, Properties::BoundaryTypes>;
49

50
    using FVGridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
51
52
53
    using FVElementGeometry = typename FVGridGeometry::LocalView;
    using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace;
    using Element = typename GridView::template Codim<0>::Entity;
54
55
56
    using ElementVolumeVariables = typename GetPropType<TypeTag, Properties::GridVolumeVariables>::LocalView;
    using ElementFaceVariables = typename GetPropType<TypeTag, Properties::GridFaceVariables>::LocalView;
    using FluidState = GetPropType<TypeTag, Properties::FluidState>;
57
58
59

    using GlobalPosition = typename Element::Geometry::GlobalCoordinate;

60
61
    using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
    using NumEqVector = GetPropType<TypeTag, Properties::NumEqVector>;
62

63
    using CouplingManager = GetPropType<TypeTag, Properties::CouplingManager>;
64
65
    using TimeLoopPtr = std::shared_ptr<TimeLoop<Scalar>>;

66
    static constexpr bool useMoles = GetPropType<TypeTag, Properties::ModelTraits>::useMoles();
67
68

public:
69
    FreeFlowSubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry, std::shared_ptr<CouplingManager> couplingManager)
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    : ParentType(fvGridGeometry, "Stokes"), eps_(1e-6), couplingManager_(couplingManager)
    {
        velocity_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.Velocity");
        pressure_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.Pressure");
        moleFraction_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.MoleFraction");
    }

   /*!
     * \name Problem parameters
     */
    // \{

   /*!
     * \brief Return the temperature within the domain in [K].
     */
    Scalar temperature() const
    { return 293.15; }

   /*!
     * \brief Return the sources within the domain.
     *
     * \param globalPos The global position
     */
    NumEqVector sourceAtPos(const GlobalPosition &globalPos) const
    { return NumEqVector(0.0); }

    // \}
   /*!
     * \name Boundary conditions
     */
    // \{

    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param element The finite element
     * \param scvf The sub control volume face
     */
    BoundaryTypes boundaryTypes(const Element& element,
                                const SubControlVolumeFace& scvf) const
    {
        BoundaryTypes values;

        const auto& globalPos = scvf.center();

        if(onLeftBoundary_(globalPos))
        {
118
            values.setDirichlet(Indices::conti0EqIdx + 1);
119
120
121
122
123
124
            values.setDirichlet(Indices::velocityXIdx);
            values.setDirichlet(Indices::velocityYIdx);
        }
        else if(onRightBoundary_(globalPos))
        {
            values.setDirichlet(Indices::pressureIdx);
125
            values.setOutflow(Indices::conti0EqIdx + 1);
126
127
128
129
130
        }
        else
        {
            values.setDirichlet(Indices::velocityXIdx);
            values.setDirichlet(Indices::velocityYIdx);
131
132
            values.setNeumann(Indices::conti0EqIdx);
            values.setNeumann(Indices::conti0EqIdx + 1);
133
134
135
136
        }

        if (couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf))
        {
137
138
            values.setCouplingNeumann(Indices::conti0EqIdx);
            values.setCouplingNeumann(Indices::conti0EqIdx + 1);
139
            values.setCouplingNeumann(Indices::momentumYBalanceIdx);
140
            values.setBeaversJoseph(Indices::momentumXBalanceIdx);
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        }

        return values;
    }

    /*!
     * \brief Evaluate the boundary conditions for a Dirichlet control volume.
     *
     * \param element The element
     * \param scvf The subcontrolvolume face
     */
    PrimaryVariables dirichletAtPos(const GlobalPosition& pos) const
    {
        PrimaryVariables values(0.0);
        values = initialAtPos(pos);

        return values;
    }

    /*!
     * \brief Evaluate the boundary conditions for a Neumann control volume.
     *
     * \param element The element for which the Neumann boundary condition is set
     * \param fvGeomentry The fvGeometry
     * \param elemVolVars The element volume variables
     * \param elemFaceVars The element face variables
     * \param scvf The boundary sub control volume face
     */
    NumEqVector neumann(const Element& element,
                        const FVElementGeometry& fvGeometry,
                        const ElementVolumeVariables& elemVolVars,
                        const ElementFaceVariables& elemFaceVars,
                        const SubControlVolumeFace& scvf) const
    {
        PrimaryVariables values(0.0);

        if(couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf))
        {
179
            values[Indices::momentumYBalanceIdx] = couplingManager().couplingData().momentumCouplingCondition(element, fvGeometry, elemVolVars, elemFaceVars, scvf);
180

181
            const auto massFlux = couplingManager().couplingData().massCouplingCondition(element, fvGeometry, elemVolVars, elemFaceVars, scvf);
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
            values[Indices::conti0EqIdx] = massFlux[0];
            values[Indices::conti0EqIdx + 1] = massFlux[1];
        }
        return values;
    }

    // \}

    /*!
     * \brief Set the coupling manager
     */
    void setCouplingManager(std::shared_ptr<CouplingManager> cm)
    { couplingManager_ = cm; }

    /*!
     * \brief Get the coupling manager
     */
    const CouplingManager& couplingManager() const
    { return *couplingManager_; }

   /*!
     * \name Volume terms
     */
    // \{

   /*!
     * \brief Evaluate the initial value for a control volume.
     *
     * \param globalPos The global position
     */
212
    PrimaryVariables initialAtPos(const GlobalPosition& globalPos) const
213
    {
214
215
216
217
218
219
220
        PrimaryVariables values(0.0);

        // This is only an approximation of the actual hydorostatic pressure gradient.
        // Air is compressible (the density depends on pressure), thus the actual
        // vertical pressure profile is non-linear.
        // This discrepancy can lead to spurious flows at the outlet if the inlet
        // velocity is chosen too small.
221
222
        FluidState fluidState;
        updateFluidStateForBC_(fluidState, pressure_);
223
        const Scalar density = FluidSystem::density(fluidState, 0);
224
        values[Indices::pressureIdx] = pressure_ - density*this->gravity()[1]*(this->gridGeometry().bBoxMax()[1] - globalPos[1]);
225

226
227

        // gravity has negative sign
228
        values[Indices::conti0EqIdx + 1] = moleFraction_;
229
230
        values[Indices::velocityXIdx] = 4.0 * velocity_ * (globalPos[1] - this->gridGeometry().bBoxMin()[1])
                                                        * (this->gridGeometry().bBoxMax()[1] - globalPos[1])
231
232
233
234
235
236
237
238
239
240
241
                                                        / (height_() * height_());

        return values;
    }

    void setTimeLoop(TimeLoopPtr timeLoop)
    { timeLoop_ = timeLoop; }

    /*!
     * \brief Returns the intrinsic permeability of required as input parameter for the Beavers-Joseph-Saffman boundary condition
     */
242
    Scalar permeability(const Element& element, const SubControlVolumeFace& scvf) const
243
    {
244
        return couplingManager().couplingData().darcyPermeability(element, scvf);
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    }

    /*!
     * \brief Returns the alpha value required as input parameter for the Beavers-Joseph-Saffman boundary condition
     */
    Scalar alphaBJ(const SubControlVolumeFace& scvf) const
    {
        return couplingManager().problem(CouplingManager::darcyIdx).spatialParams().beaversJosephCoeffAtPos(scvf.center());
    }

    // \}

private:
    bool onLeftBoundary_(const GlobalPosition &globalPos) const
259
    { return globalPos[0] < this->gridGeometry().bBoxMin()[0] + eps_; }
260
261

    bool onRightBoundary_(const GlobalPosition &globalPos) const
262
    { return globalPos[0] > this->gridGeometry().bBoxMax()[0] - eps_; }
263
264

    bool onLowerBoundary_(const GlobalPosition &globalPos) const
265
    { return globalPos[1] < this->gridGeometry().bBoxMin()[1] + eps_; }
266
267

    bool onUpperBoundary_(const GlobalPosition &globalPos) const
268
    { return globalPos[1] > this->gridGeometry().bBoxMax()[1] - eps_; }
269
270
271
272
273

    //! \brief updates the fluid state to obtain required quantities for IC/BC
    void updateFluidStateForBC_(FluidState& fluidState, const Scalar pressure) const
    {
        fluidState.setTemperature(temperature());
274
275
276
277
        fluidState.setPressure(0, pressure);
        fluidState.setSaturation(0, 1.0);
        fluidState.setMoleFraction(0, 1, moleFraction_);
        fluidState.setMoleFraction(0, 0, 1.0 - moleFraction_);
278
279

        typename FluidSystem::ParameterCache paramCache;
280
        paramCache.updatePhase(fluidState, 0);
281

282
283
        const Scalar density = FluidSystem::density(fluidState, paramCache, 0);
        fluidState.setDensity(0, density);
284

285
286
        const Scalar molarDensity = FluidSystem::molarDensity(fluidState, paramCache, 0);
        fluidState.setMolarDensity(0, molarDensity);
287

288
289
        const Scalar enthalpy = FluidSystem::enthalpy(fluidState, paramCache, 0);
        fluidState.setEnthalpy(0, enthalpy);
290
291
292
    }
    // the height of the free-flow domain
    const Scalar height_() const
293
    { return this->gridGeometry().bBoxMax()[1] - this->gridGeometry().bBoxMin()[1]; }
294
295
296
297
298
299
300
301
302
303
304

    Scalar eps_;

    Scalar velocity_;
    Scalar pressure_;
    Scalar moleFraction_;

    TimeLoopPtr timeLoop_;

    std::shared_ptr<CouplingManager> couplingManager_;
};
305
306

} //end namespace Dumux
307

308
#endif