porousmediumsubproblem.hh 13.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
 * \brief A simple Darcy test problem (cell-centered finite volume method).
 */
#ifndef DUMUX_DARCY_SUBPROBLEM_HH
#define DUMUX_DARCY_SUBPROBLEM_HH

27
#include <dumux/common/properties.hh>
28
29
30
31
#include <dumux/common/timeloop.hh>
#include <dumux/io/gnuplotinterface.hh>

#include <dumux/porousmediumflow/problem.hh>
32

33
namespace Dumux {
34

35
36
37
/*!
 * \brief The porous medium flow sub problem
 */
38
template <class TypeTag>
39
class PorousMediumSubProblem : public PorousMediumFlowProblem<TypeTag>
40
41
{
    using ParentType = PorousMediumFlowProblem<TypeTag>;
42
    using GridView = typename GetPropType<TypeTag, Properties::GridGeometry>::GridView;
43
44
45
46
47
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
    using NumEqVector = GetPropType<TypeTag, Properties::NumEqVector>;
    using BoundaryTypes = GetPropType<TypeTag, Properties::BoundaryTypes>;
48
    using FVElementGeometry = typename GetPropType<TypeTag, Properties::GridGeometry>::LocalView;
49
50
    using SubControlVolume = typename FVElementGeometry::SubControlVolume;
    using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace;
51
    using FVGridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
52
53
    using GridVariables = GetPropType<TypeTag, Properties::GridVariables>;
    using ElementFluxVariablesCache = typename GridVariables::GridFluxVariablesCache::LocalView;
54
55

    // copy some indices for convenience
56
    using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices;
57
58
59
60
61
62
63
64
    enum {
        // grid and world dimension
        dim = GridView::dimension,
        dimworld = GridView::dimensionworld,

        // primary variable indices
        conti0EqIdx = Indices::conti0EqIdx,
        pressureIdx = Indices::pressureIdx,
65
        phaseIdx = 0,
66
67
        // TODO: dumux-course-task 2.A
        // set the `transportCompIdx` to `Indices::switchIdx`.
68
        transportCompIdx = 1
69
70
71
72
73
    };

    using Element = typename GridView::template Codim<0>::Entity;
    using GlobalPosition = Dune::FieldVector<Scalar, dimworld>;

74
    using CouplingManager = GetPropType<TypeTag, Properties::CouplingManager>;
75
76
77
    using TimeLoopPtr = std::shared_ptr<TimeLoop<Scalar>>;

public:
78
    PorousMediumSubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry,
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
                   std::shared_ptr<CouplingManager> couplingManager)
    : ParentType(fvGridGeometry, "Darcy"), eps_(1e-7), couplingManager_(couplingManager)
    {
        moleFraction_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.MoleFraction");

        // initialize output file
        plotFluxes_ = getParamFromGroup<bool>(this->paramGroup(), "Problem.PlotFluxes", false);
        plotStorage_ = getParamFromGroup<bool>(this->paramGroup(), "Problem.PlotStorage", false);
        storageFileName_ = "storage_" + getParam<std::string>("Problem.Name") + "_" + this->name() + ".csv";
        storageFile_.open(storageFileName_);
        storageFile_ << "#Time[s]" << ";"
                     << "WaterMass[kg]" << ";"
                     << "WaterMassLoss[kg]" << ";"
                     << "EvaporationRate[mm/d]"
                     << std::endl;
    }

    /*!
     * \name Simulation steering
     */
    // \{

    /*!
     * \brief Initialize the problem.
     */
    template<class SolutionVector, class GridVariables>
    void init(const SolutionVector& curSol,
              const GridVariables& gridVariables)
107
108
109
110
111
    {
        // TODO: dumux-course-task 2.B
        // Initialize `initialWaterContent_` and assign that to `lastWaterMass_`.

    }
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

    template<class SolutionVector, class GridVariables>
    void postTimeStep(const SolutionVector& curSol,
                      const GridVariables& gridVariables)

    {
        evaluateWaterMassStorageTerm(curSol, gridVariables);
        evaluateInterfaceFluxes(curSol, gridVariables);

        gnuplotStorage_.resetPlot();
        gnuplotStorage_.setDatafileSeparator(';');
        gnuplotStorage_.setXlabel("time [d]");
        gnuplotStorage_.setXRange(0.0, getParam<Scalar>("TimeLoop.TEnd"));
        gnuplotStorage_.setYlabel("evaporation rate [mm/d]");
        gnuplotStorage_.setOption("set yrange [0.0:]");
        gnuplotStorage_.setOption("set y2label 'cumulative mass loss'");
        gnuplotStorage_.setOption("set y2range [0.0:0.5]");
        gnuplotStorage_.setOption("set y2range [0.0:0.5]");
        gnuplotStorage_.addFileToPlot(storageFileName_, "using 1:4 with lines title 'evaporation rate'");
        gnuplotStorage_.addFileToPlot(storageFileName_, "using 1:3 axes x1y2 with lines title 'cumulative mass loss'");
        if (plotStorage_)
            gnuplotStorage_.plot("temp");
    }

    template<class SolutionVector, class GridVariables>
    Scalar evaluateWaterMassStorageTerm(const SolutionVector& curSol,
                                        const GridVariables& gridVariables)

    {
        // compute the mass in the entire domain
        Scalar waterMass = 0.0;

144
        for (const auto& element : elements(this->gridGeometry().gridView()))
145
        {
146
            auto fvGeometry = localView(this->gridGeometry());
147
148
149
150
151
152
153
            fvGeometry.bindElement(element);

            auto elemVolVars = localView(gridVariables.curGridVolVars());
            elemVolVars.bindElement(element, fvGeometry, curSol);

            for (auto&& scv : scvs(fvGeometry))
            {
Timo Koch's avatar
Timo Koch committed
154
                // const auto& volVars = elemVolVars[scv];
155
156
157

                // TODO: dumux-course-task 2.B
                // Insert calculation of the water mass here
158
                waterMass += 0.0;
159
160
161
162
163
            }
        }

        Scalar cumMassLoss = initialWaterContent_ - waterMass;
        Scalar evaporationRate = (lastWaterMass_ - waterMass) * 86400
164
                                 / (this->gridGeometry().bBoxMax()[0] - this->gridGeometry().bBoxMin()[0])
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
                                 / timeLoop_->timeStepSize();
        lastWaterMass_ = waterMass;

        storageFile_ << timeLoop_->time() << ";"
                     << waterMass << ";"
                     << cumMassLoss << ";"
                     << evaporationRate
                     << std::endl;

        return waterMass;
    }

    template<class SolutionVector, class GridVariables>
    void evaluateInterfaceFluxes(const SolutionVector& curSol,
                                 const GridVariables& gridVariables)

    {
        std::vector<Scalar> x;
        std::vector<Scalar> y;

185
        for (const auto& element : elements(this->gridGeometry().gridView()))
186
        {
187
            auto fvGeometry = localView(this->gridGeometry());
188
189
190
191
192
193
194
195
196
197
            fvGeometry.bindElement(element);

            auto elemVolVars = localView(gridVariables.curGridVolVars());
            elemVolVars.bindElement(element, fvGeometry, curSol);

            for (auto&& scvf : scvfs(fvGeometry))
            {
                if (!couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf))
                    continue;

198
199
200
                // TODO: dumux-course-task 2.B
                // Use "massCouplingCondition" from the couplingManager here
                NumEqVector flux(0.0);
201
202
203
204
205
206
207
208

                x.push_back(scvf.center()[0]);
                y.push_back(flux[transportCompIdx]);
            }
        }

        gnuplotInterfaceFluxes_.resetPlot();
        gnuplotInterfaceFluxes_.setXlabel("x-position [m]");
209
        gnuplotInterfaceFluxes_.setXRange(this->gridGeometry().bBoxMin()[0], this->gridGeometry().bBoxMax()[0]);
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
        gnuplotInterfaceFluxes_.setYlabel("flux [kg/(m^2 s)]");
        gnuplotInterfaceFluxes_.setYRange(-5e-4, 0.0);
        gnuplotInterfaceFluxes_.setOption("set label 'time: " + std::to_string(timeLoop_->time()/86400.) + "d' at graph 0.8,0.8 ");
        std::string fluxFileName = "flux_" + std::to_string(timeLoop_->timeStepIndex()) +
                                   "_" + getParam<std::string>("Problem.Name") + "_" + this->name() + ".csv";
        gnuplotInterfaceFluxes_.addDataSetToPlot(x, y, fluxFileName, "with lines title 'water mass flux'");
        if (plotFluxes_)
            gnuplotInterfaceFluxes_.plot("flux_" + std::to_string(timeLoop_->timeStepIndex()));
    }

    /*!
     * \name Problem parameters
     */
    // \{

    /*!
     * \brief Return the temperature within the domain in [K].
     *
     */
    Scalar temperature() const
    { return 293.15; }
    // \}

    /*!
     * \name Boundary conditions
     */
    // \{

    /*!
      * \brief Specifies which kind of boundary condition should be
      *        used for which equation on a given boundary control volume.
      *
      * \param element The element
      * \param scvf The boundary sub control volume face
      */
    BoundaryTypes boundaryTypes(const Element& element, const SubControlVolumeFace& scvf) const
    {
        BoundaryTypes values;
        values.setAllNeumann();

        if (couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf))
            values.setAllCouplingNeumann();

        return values;
    }

    /*!
     * \brief Evaluate the boundary conditions for a Neumann control volume.
     *
     * \param element The element for which the Neumann boundary condition is set
     * \param fvGeomentry The fvGeometry
     * \param elemVolVars The element volume variables
     * \param scvf The boundary sub control volume face
     *
     * For this method, the \a values variable stores primary variables.
     */
    template<class ElementVolumeVariables>
    NumEqVector neumann(const Element& element,
                        const FVElementGeometry& fvGeometry,
                        const ElementVolumeVariables& elemVolVars,
270
                        const ElementFluxVariablesCache& elemFluxVarsCache,
271
272
273
274
275
                        const SubControlVolumeFace& scvf) const
    {
        NumEqVector values(0.0);

        if (couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf))
276
            values = couplingManager().couplingData().massCouplingCondition(element, fvGeometry, elemVolVars, scvf);
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

        return values;
    }

    // \}

    /*!
     * \name Volume terms
     */
    // \{
    /*!
     * \brief Evaluate the source term for all phases within a given
     *        sub-control-volume.
     *
     * \param element The element for which the source term is set
     * \param fvGeomentry The fvGeometry
     * \param elemVolVars The element volume variables
     * \param scv The subcontrolvolume
     */
    template<class ElementVolumeVariables>
297
    NumEqVector source(const Element& element,
298
299
                       const FVElementGeometry& fvGeometry,
                       const ElementVolumeVariables& elemVolVars,
300
                       const SubControlVolume& scv) const
301
302
303
304
305
306
307
308
309
310
311
312
    { return NumEqVector(0.0); }

    // \}

    /*!
     * \brief Evaluate the initial value for a control volume.
     *
     * \param element The element
     *
     * For this method, the \a priVars parameter stores primary
     * variables.
     */
313
    PrimaryVariables initialAtPos(const GlobalPosition& globalPos) const
314
    {
315
316
        static const Scalar stokesPressure = getParamFromGroup<Scalar>("Stokes", "Problem.Pressure");

317
        PrimaryVariables values(0.0);
318
319
320
321

        // TODO: dumux-course-task 2.A
        // Declare here which phases are present.

322
        values[Indices::pressureIdx] = stokesPressure;
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
        values[transportCompIdx] = moleFraction_;
        return values;
    }

    // \}

    //! Set the coupling manager
    void setCouplingManager(std::shared_ptr<CouplingManager> cm)
    { couplingManager_ = cm; }

    //! Get the coupling manager
    const CouplingManager& couplingManager() const
    { return *couplingManager_; }

    void setTimeLoop(TimeLoopPtr timeLoop)
    { timeLoop_ = timeLoop; }

private:
    bool onLeftBoundary_(const GlobalPosition &globalPos) const
342
    { return globalPos[0] < this->gridGeometry().bBoxMin()[0] + eps_; }
343
344

    bool onRightBoundary_(const GlobalPosition &globalPos) const
345
    { return globalPos[0] > this->gridGeometry().bBoxMax()[0] - eps_; }
346
347

    bool onLowerBoundary_(const GlobalPosition &globalPos) const
348
    { return globalPos[1] < this->gridGeometry().bBoxMin()[1] + eps_; }
349
350

    bool onUpperBoundary_(const GlobalPosition &globalPos) const
351
    { return globalPos[1] > this->gridGeometry().bBoxMax()[1] - eps_; }
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

    Scalar eps_;
    Scalar moleFraction_;

    Scalar initialWaterContent_ = 0.0;
    Scalar lastWaterMass_ = 0.0;

    TimeLoopPtr timeLoop_;
    std::shared_ptr<CouplingManager> couplingManager_;

    std::string storageFileName_;
    std::ofstream storageFile_;
    bool plotFluxes_;
    bool plotStorage_;
    Dumux::GnuplotInterface<Scalar> gnuplotInterfaceFluxes_;
    Dumux::GnuplotInterface<Scalar> gnuplotStorage_;
};
369

370
} //end namespace Dumux
371

372
#endif