freeflowsubproblem.hh 11.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 * \brief The free flow sub problem
 */
#ifndef DUMUX_STOKES_SUBPROBLEM_HH
#define DUMUX_STOKES_SUBPROBLEM_HH

26
#include <dumux/common/properties.hh>
27
#include <dumux/common/timeloop.hh>
28

29
#include <dumux/freeflow/navierstokes/problem.hh>
30

31
namespace Dumux {
32
33
34
35
/*!
 * \brief The free flow sub problem
 */
template <class TypeTag>
36
class FreeFlowSubProblem : public NavierStokesProblem<TypeTag>
37
38
39
{
    using ParentType = NavierStokesProblem<TypeTag>;

40
    using GridView = typename GetPropType<TypeTag, Properties::GridGeometry>::GridView;
41
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
42

43
    using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices;
44

45
    using BoundaryTypes = GetPropType<TypeTag, Properties::BoundaryTypes>;
46

47
    using FVGridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
48
49
50
51
52
53
    using FVElementGeometry = typename FVGridGeometry::LocalView;
    using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace;
    using Element = typename GridView::template Codim<0>::Entity;

    using GlobalPosition = typename Element::Geometry::GlobalCoordinate;

54
55
56
    using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
    using NumEqVector = GetPropType<TypeTag, Properties::NumEqVector>;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
57

58
    using CouplingManager = GetPropType<TypeTag, Properties::CouplingManager>;
59
60

public:
61
    FreeFlowSubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry, std::shared_ptr<CouplingManager> couplingManager)
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    : ParentType(fvGridGeometry, "Stokes"), eps_(1e-6), couplingManager_(couplingManager)
    {
        deltaP_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.PressureDifference");
    }

   /*!
     * \name Problem parameters
     */
    // \{

   /*!
     * \brief Return the temperature within the domain in [K].
     *
     * This problem assumes a temperature of 10 degrees Celsius.
     */
    Scalar temperature() const
    { return 273.15 + 10; } // 10°C

   /*!
     * \brief Return the sources within the domain.
     *
     * \param globalPos The global position
     */
    NumEqVector sourceAtPos(const GlobalPosition &globalPos) const
    { return NumEqVector(0.0); }
    // \}

   /*!
     * \name Boundary conditions
     */
    // \{

    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param element The finite element
     * \param scvf The sub control volume face
     */
    BoundaryTypes boundaryTypes(const Element& element,
                                const SubControlVolumeFace& scvf) const
    {
        BoundaryTypes values;

        const auto& globalPos = scvf.dofPosition();

#if EXNUMBER == 0 // flow from top to bottom
        if(onUpperBoundary_(globalPos))
        {
            values.setDirichlet(Indices::velocityXIdx);
            values.setDirichlet(Indices::velocityYIdx);
        }

        if (onRightBoundary_(globalPos) || (onLeftBoundary_(globalPos)))
        {
            values.setDirichlet(Indices::velocityXIdx);
            values.setDirichlet(Indices::velocityYIdx);
        }
#else // flow flom left to right
        if(onLeftBoundary_(globalPos) || onRightBoundary_(globalPos))
            values.setDirichlet(Indices::pressureIdx);
        else
        {
            values.setDirichlet(Indices::velocityXIdx);
            values.setDirichlet(Indices::velocityYIdx);
        }
#endif

        if(couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf))
        {
            values.setCouplingNeumann(Indices::conti0EqIdx);
#if EXNUMBER < 3
            values.setCouplingNeumann(Indices::momentumYBalanceIdx);
#else
            //consider orientation of face automatically
            values.setCouplingNeumann(scvf.directionIndex());
#endif

140
141
142
#if EXNUMBER < 2
            values.setDirichlet(Indices::velocityXIdx); // assume no slip on interface
#elif EXNUMBER == 2
143
            // set the Beaver-Joseph-Saffman slip condition for the tangential momentum balance equation
144
            values.setBeaversJoseph(Indices::momentumXBalanceIdx);
145
#else
146
147
            // set the Beaver-Joseph-Saffman slip condition for the tangential momentum balance equation,
            // consider orientation of face automatically
148
            values.setBeaversJoseph(1 - scvf.directionIndex());
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#endif
        }

        return values;
    }

    /*!
     * \brief Evaluate the boundary conditions for a Dirichlet control volume.
     *
     * \param globalPos The global position
     */
    PrimaryVariables dirichletAtPos(const GlobalPosition& globalPos) const
    {
        PrimaryVariables values(0.0);
        values = initialAtPos(globalPos);

        return values;
    }

    /*!
     * \brief Evaluate the boundary conditions for a Neumann control volume.
     *
     * \param element The element for which the Neumann boundary condition is set
     * \param fvGeomentry The fvGeometry
     * \param elemVolVars The element volume variables
     * \param elemFaceVars The element face variables
     * \param scvf The boundary sub control volume face
     */
    template<class ElementVolumeVariables, class ElementFaceVariables>
    NumEqVector neumann(const Element& element,
                        const FVElementGeometry& fvGeometry,
                        const ElementVolumeVariables& elemVolVars,
                        const ElementFaceVariables& elemFaceVars,
                        const SubControlVolumeFace& scvf) const
    {
        NumEqVector values(0.0);

        if(couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf))
        {
188
            values[Indices::conti0EqIdx] = couplingManager().couplingData().massCouplingCondition(element, fvGeometry, elemVolVars, elemFaceVars, scvf);
189
#if EXNUMBER < 3
190
            values[Indices::momentumYBalanceIdx] = couplingManager().couplingData().momentumCouplingCondition(element, fvGeometry, elemVolVars, elemFaceVars, scvf);
191
#else
192
            values[scvf.directionIndex()] = couplingManager().couplingData().momentumCouplingCondition(element, fvGeometry, elemVolVars, elemFaceVars, scvf);
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#endif

        }
        return values;
    }

    // \}

    //! Set the coupling manager
    void setCouplingManager(std::shared_ptr<CouplingManager> cm)
    { couplingManager_ = cm; }

    //! Get the coupling manager
    const CouplingManager& couplingManager() const
    { return *couplingManager_; }

   /*!
     * \name Volume terms
     */
    // \{

   /*!
     * \brief Evaluate the initial value for a control volume.
     *
     * \param globalPos The global position
     */
    PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const
    {
        PrimaryVariables values(0.0);
#if EXNUMBER == 0
223
        values[Indices::velocityYIdx] = -1e-6 * globalPos[0] * (this->gridGeometry().bBoxMax()[0] - globalPos[0]);
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#else
        // set fixed pressures on the left and right boundary
        if(onLeftBoundary_(globalPos))
            values[Indices::pressureIdx] = deltaP_;
        if(onRightBoundary_(globalPos))
            values[Indices::pressureIdx] = 0.0;
#endif

        return values;
    }

    /*!
     * \brief Returns the intrinsic permeability of required as input parameter for the Beavers-Joseph-Saffman boundary condition
     */
238
    Scalar permeability(const Element& element, const SubControlVolumeFace& scvf) const
239
    {
240
        return couplingManager().couplingData().darcyPermeability(element, scvf);
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    }

    /*!
     * \brief Returns the alpha value required as input parameter for the Beavers-Joseph-Saffman boundary condition
     */
    Scalar alphaBJ(const SubControlVolumeFace& scvf) const
    {
        return couplingManager().problem(CouplingManager::darcyIdx).spatialParams().beaversJosephCoeffAtPos(scvf.center());
    }

    /*!
     * \brief calculate the analytical velocity in x direction based on Beavers & Joseph (1967)
     */
    void calculateAnalyticalVelocityX() const
    {
256
        analyticalVelocityX_.resize(this->gridGeometry().gridView().size(0));
257
258

        using std::sqrt;
259
        const Scalar dPdX = -deltaP_ / (this->gridGeometry().bBoxMax()[0] - this->gridGeometry().bBoxMin()[0]);
260
261
262
263
        static const Scalar mu = FluidSystem::viscosity(temperature(), 1e5);
        static const Scalar alpha = getParam<Scalar>("Darcy.SpatialParams.AlphaBeaversJoseph");
        static const Scalar K = getParam<Scalar>("Darcy.SpatialParams.Permeability");
        static const Scalar sqrtK = sqrt(K);
264
        const Scalar sigma = (this->gridGeometry().bBoxMax()[1] - this->gridGeometry().bBoxMin()[1])/sqrtK;
265
266
267

        const Scalar uB =  -K/(2.0*mu) * ((sigma*sigma + 2.0*alpha*sigma) / (1.0 + alpha*sigma)) * dPdX;

268
        for (const auto& element : elements(this->gridGeometry().gridView()))
269
        {
270
271
            const auto eIdx = this->gridGeometry().gridView().indexSet().index(element);
            const Scalar y = element.geometry().center()[1] - this->gridGeometry().bBoxMin()[1];
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

            const Scalar u = uB*(1.0 + alpha/sqrtK*y) + 1.0/(2.0*mu) * (y*y + 2*alpha*y*sqrtK) * dPdX;
            analyticalVelocityX_[eIdx] = u;
        }
    }

    /*!
     * \brief Get the analytical velocity in x direction
     */
    const std::vector<Scalar>& getAnalyticalVelocityX() const
    {
        if(analyticalVelocityX_.empty())
            calculateAnalyticalVelocityX();
        return analyticalVelocityX_;
    }

    // \}

private:
    bool onLeftBoundary_(const GlobalPosition &globalPos) const
292
    { return globalPos[0] < this->gridGeometry().bBoxMin()[0] + eps_; }
293
294

    bool onRightBoundary_(const GlobalPosition &globalPos) const
295
    { return globalPos[0] > this->gridGeometry().bBoxMax()[0] - eps_; }
296
297

    bool onLowerBoundary_(const GlobalPosition &globalPos) const
298
    { return globalPos[1] < this->gridGeometry().bBoxMin()[1] + eps_; }
299
300

    bool onUpperBoundary_(const GlobalPosition &globalPos) const
301
    { return globalPos[1] > this->gridGeometry().bBoxMax()[1] - eps_; }
302
303
304
305
306
307
308
309

    Scalar eps_;
    Scalar deltaP_;

    std::shared_ptr<CouplingManager> couplingManager_;

    mutable std::vector<Scalar> analyticalVelocityX_;
};
310
311

} //end namespace Dumux
312

313
#endif