freeflowsubproblem.hh 13.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
19
20
21
22
/*!
 * \file
 * \brief The free-flow sub problem
 */
23
24
25
26
#ifndef DUMUX_FREEFLOW1P2C_SUBPROBLEM_HH
#define DUMUX_FREEFLOW1P2C_SUBPROBLEM_HH

#if EXNUMBER >= 1
27
#include <dumux/freeflow/rans/problem.hh>
28
29
30
31
#else
#include <dumux/freeflow/navierstokes/problem.hh>
#endif

32
#include <dumux/common/timeloop.hh>
33
#include <dumux/common/properties.hh>
34
#include <dumux/multidomain/boundary/stokesdarcy/couplingdata.hh>
35

36
namespace Dumux {
37
38
39
40
41
42

/*!
 * \brief The free-flow sub problem
 */
template <class TypeTag>
#if EXNUMBER >= 1
43
class FreeFlowSubProblem : public RANSProblem<TypeTag>
44
{
45
    using ParentType = RANSProblem<TypeTag>;
46
47
48
49
50
51
#else
class FreeFlowSubProblem : public NavierStokesProblem<TypeTag>
{
    using ParentType = NavierStokesProblem<TypeTag>;
#endif

52
    using GridView = typename GetPropType<TypeTag, Properties::GridGeometry>::GridView;
53
54
55
56
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
    using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices;
    using BoundaryTypes = GetPropType<TypeTag, Properties::BoundaryTypes>;
57

58
    using FVGridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
59
60
61
    using FVElementGeometry = typename FVGridGeometry::LocalView;
    using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace;
    using Element = typename GridView::template Codim<0>::Entity;
62
63
64
    using ElementVolumeVariables = typename GetPropType<TypeTag, Properties::GridVolumeVariables>::LocalView;
    using ElementFaceVariables = typename GetPropType<TypeTag, Properties::GridFaceVariables>::LocalView;
    using FluidState = GetPropType<TypeTag, Properties::FluidState>;
65
66
67

    using GlobalPosition = typename Element::Geometry::GlobalCoordinate;

68
69
    using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
    using NumEqVector = GetPropType<TypeTag, Properties::NumEqVector>;
70

71
    using CouplingManager = GetPropType<TypeTag, Properties::CouplingManager>;
72
73
74
75
    using TimeLoopPtr = std::shared_ptr<TimeLoop<Scalar>>;

    using DiffusionCoefficientAveragingType = typename StokesDarcyCouplingOptions::DiffusionCoefficientAveragingType;

76
    static constexpr bool useMoles = GetPropType<TypeTag, Properties::ModelTraits>::useMoles();
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

public:
    FreeFlowSubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry, std::shared_ptr<CouplingManager> couplingManager)
    : ParentType(fvGridGeometry, "Stokes"), eps_(1e-6), couplingManager_(couplingManager)
    {
        refVelocity_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.RefVelocity");
        refPressure_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.RefPressure");
        refMoleFrac_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.refMoleFrac");
        refTemperature_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.RefTemperature");

        diffCoeffAvgType_ = StokesDarcyCouplingOptions::stringToEnum(DiffusionCoefficientAveragingType{},
                                                                     getParamFromGroup<std::string>(this->paramGroup(), "Problem.InterfaceDiffusionCoefficientAvg"));
    }

   /*!
     * \name Problem parameters
     */
    // \{

   /*!
     * \brief Return the temperature within the domain in [K].
     */
    Scalar temperature() const
    { return refTemperature_; }

   /*!
     * \brief Return the sources within the domain.
     *
     * \param globalPos The global position
     */
    NumEqVector sourceAtPos(const GlobalPosition &globalPos) const
    { return NumEqVector(0.0); }

    // \}
   /*!
     * \name Boundary conditions
     */
    // \{

    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param element The finite element
     * \param scvf The sub control volume face
     */
    BoundaryTypes boundaryTypes(const Element& element,
                                const SubControlVolumeFace& scvf) const
    {
        BoundaryTypes values;

        const auto& globalPos = scvf.center();

        if (onLeftBoundary_(globalPos))
        {
            values.setDirichlet(Indices::velocityXIdx);
            values.setDirichlet(Indices::velocityYIdx);
134
            values.setDirichlet(Indices::conti0EqIdx + 1);
135
            values.setDirichlet(Indices::energyEqIdx);
136
137
138
139
140
141
142
143
        }

        if (onLowerBoundary_(globalPos))
        {
            values.setDirichlet(Indices::velocityXIdx);
            values.setDirichlet(Indices::velocityYIdx);
            values.setNeumann(Indices::conti0EqIdx);
            values.setNeumann(Indices::conti0EqIdx + 1);
144
            values.setNeumann(Indices::energyEqIdx);
145
146
147
148
149
150
151
152
153
154
155
        }

        if (onUpperBoundary_(globalPos))
        {
#if EXNUMBER >=2
            values.setAllSymmetry();
#else
            values.setDirichlet(Indices::velocityXIdx);
            values.setDirichlet(Indices::velocityYIdx);
            values.setNeumann(Indices::conti0EqIdx);
            values.setNeumann(Indices::conti0EqIdx + 1);
156
            values.setNeumann(Indices::energyEqIdx);
157
158
159
160
161
162
#endif
        }

        if (onRightBoundary_(globalPos))
        {
            values.setDirichlet(Indices::pressureIdx);
163
            values.setOutflow(Indices::conti0EqIdx + 1);
164
            values.setOutflow(Indices::energyEqIdx);
165
166
167
168
169
170
        }

        if (couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf))
        {
            values.setCouplingNeumann(Indices::conti0EqIdx);
            values.setCouplingNeumann(Indices::conti0EqIdx + 1);
171
            values.setCouplingNeumann(Indices::energyEqIdx);
172
            values.setCouplingNeumann(Indices::momentumYBalanceIdx);
173
            values.setBeaversJoseph(Indices::momentumXBalanceIdx);
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        }
        return values;
    }

    /*!
     * \brief Evaluate the boundary conditions for a Dirichlet control volume.
     *
     * \param element The element
     * \param scvf The subcontrolvolume face
     */
    PrimaryVariables dirichletAtPos(const GlobalPosition& pos) const
    {
        PrimaryVariables values(0.0);
        values = initialAtPos(pos);

        return values;
    }

    /*!
     * \brief Evaluate the boundary conditions for a Neumann control volume.
     *
     * \param element The element for which the Neumann boundary condition is set
     * \param fvGeomentry The fvGeometry
     * \param elemVolVars The element volume variables
     * \param elemFaceVars The element face variables
     * \param scvf The boundary sub control volume face
     */
    NumEqVector neumann(const Element& element,
                        const FVElementGeometry& fvGeometry,
                        const ElementVolumeVariables& elemVolVars,
                        const ElementFaceVariables& elemFaceVars,
                        const SubControlVolumeFace& scvf) const
    {
        PrimaryVariables values(0.0);
        if(couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf))
        {
210
            values[Indices::momentumYBalanceIdx] = couplingManager().couplingData().momentumCouplingCondition(element, fvGeometry, elemVolVars, elemFaceVars, scvf);
211

212
            const auto massFlux = couplingManager().couplingData().massCouplingCondition(element, fvGeometry, elemVolVars, elemFaceVars, scvf, diffCoeffAvgType_);
213
214
            values[Indices::conti0EqIdx] = massFlux[0];
            values[Indices::conti0EqIdx + 1] = massFlux[1];
215
            values[Indices::energyEqIdx] = couplingManager().couplingData().energyCouplingCondition(element, fvGeometry, elemVolVars, elemFaceVars, scvf, diffCoeffAvgType_);
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
        }
        return values;
    }

    // \}

    /*!
     * \brief Set the coupling manager
     */
    void setCouplingManager(std::shared_ptr<CouplingManager> cm)
    { couplingManager_ = cm; }

    /*!
     * \brief Get the coupling manager
     */
    const CouplingManager& couplingManager() const
    { return *couplingManager_; }

#if EXNUMBER >= 2
235
    bool isOnWallAtPos(const GlobalPosition& globalPos) const
236
237
238
239
    {
        return (onLowerBoundary_(globalPos));
    }
#elif EXNUMBER >= 1
240
    bool isOnWallAtPos(const GlobalPosition& globalPos) const
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
    {
        return (onLowerBoundary_(globalPos) || onUpperBoundary_(globalPos));
    }
#endif

   /*!
     * \name Volume terms
     */
    // \{

   /*!
     * \brief Evaluate the initial value for a control volume.
     *
     * \param globalPos The global position
     */
    PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const
    {
        FluidState fluidState;
        updateFluidStateForBC_(fluidState, refTemperature(), refPressure(), refMoleFrac());

261
        const Scalar density = FluidSystem::density(fluidState, 0);
262
263

        PrimaryVariables values(0.0);
264
        values[Indices::pressureIdx] = refPressure() + density*this->gravity()[1]*(globalPos[1] - this->gridGeometry().bBoxMin()[1]);
265
        values[Indices::conti0EqIdx + 1] = refMoleFrac();
266
267
268
        values[Indices::velocityXIdx] = refVelocity();
        values[Indices::temperatureIdx] = refTemperature();

269
270
271
272
273
#if EXNUMBER >= 2
        if(onLowerBoundary_(globalPos))
            values[Indices::velocityXIdx] = 0.0;
#else
        if(onUpperBoundary_(globalPos) || onLowerBoundary_(globalPos))
274
            values[Indices::velocityXIdx] = 0.0;
275
#endif
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

        return values;
    }

    //! \brief Returns the reference velocity.
    const Scalar refVelocity() const
    { return refVelocity_ ;}

    //! \brief Returns the reference pressure.
    const Scalar refPressure() const
    { return refPressure_; }

    //! \brief Returns the reference mass fraction.
    const Scalar refMoleFrac() const
    { return refMoleFrac_; }

    //! \brief Returns the reference temperature.
    const Scalar refTemperature() const
    { return refTemperature_; }


    void setTimeLoop(TimeLoopPtr timeLoop)
    { timeLoop_ = timeLoop; }

    /*!
     * \brief Returns the intrinsic permeability of required as input parameter for the Beavers-Joseph-Saffman boundary condition
     */
303
    Scalar permeability(const Element& element, const SubControlVolumeFace& scvf) const
304
    {
305
        return couplingManager().problem(CouplingManager::darcyIdx).spatialParams().permeabilityAtPos(scvf.center());
306
307
308
309
310
311
312
313
314
315
316
317
318
319
    }

    /*!
     * \brief Returns the alpha value required as input parameter for the Beavers-Joseph-Saffman boundary condition
     */
    Scalar alphaBJ(const SubControlVolumeFace& scvf) const
    {
        return couplingManager().problem(CouplingManager::darcyIdx).spatialParams().beaversJosephCoeffAtPos(scvf.center());
    }

    // \}

private:
    bool onLeftBoundary_(const GlobalPosition &globalPos) const
320
    { return globalPos[0] < this->gridGeometry().bBoxMin()[0] + eps_; }
321
322

    bool onRightBoundary_(const GlobalPosition &globalPos) const
323
    { return globalPos[0] > this->gridGeometry().bBoxMax()[0] - eps_; }
324
325

    bool onLowerBoundary_(const GlobalPosition &globalPos) const
326
    { return globalPos[1] < this->gridGeometry().bBoxMin()[1] + eps_; }
327
328

    bool onUpperBoundary_(const GlobalPosition &globalPos) const
329
    { return globalPos[1] > this->gridGeometry().bBoxMax()[1] - eps_; }
330
331
332
333
334
335

    //! \brief updates the fluid state to obtain required quantities for IC/BC
    void updateFluidStateForBC_(FluidState& fluidState, const Scalar temperature,
                                const Scalar pressure, const Scalar moleFraction) const
    {
        fluidState.setTemperature(temperature);
336
337
338
339
        fluidState.setPressure(0, pressure);
        fluidState.setSaturation(0, 1.0);
        fluidState.setMoleFraction(0, 1, moleFraction);
        fluidState.setMoleFraction(0, 0, 1.0 - moleFraction);
340
341

        typename FluidSystem::ParameterCache paramCache;
342
        paramCache.updatePhase(fluidState, 0);
343

344
345
        const Scalar density = FluidSystem::density(fluidState, paramCache, 0);
        fluidState.setDensity(0, density);
346

347
348
        const Scalar molarDensity = FluidSystem::molarDensity(fluidState, paramCache, 0);
        fluidState.setMolarDensity(0, molarDensity);
349

350
351
        const Scalar enthalpy = FluidSystem::enthalpy(fluidState, paramCache, 0);
        fluidState.setEnthalpy(0, enthalpy);
352
353
354
355
    }

    // the height of the free-flow domain
    const Scalar height_() const
356
    { return this->gridGeometry().bBoxMax()[1] - this->gridGeometry().bBoxMin()[1]; }
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

    Scalar eps_;

    Scalar refVelocity_;
    Scalar refPressure_;
    Scalar refMoleFrac_;
    Scalar refTemperature_;

    TimeLoopPtr timeLoop_;

    std::shared_ptr<CouplingManager> couplingManager_;

    DiffusionCoefficientAveragingType diffCoeffAvgType_;
};

372
373
} //end namespace Dumux

374
#endif