porousmediumsubproblem.hh 16 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
 * \brief A simple Darcy test problem (cell-centered finite volume method).
 */
#ifndef DUMUX_DARCY_SUBPROBLEM_HH
#define DUMUX_DARCY_SUBPROBLEM_HH

#include <dune/grid/yaspgrid.hh>

29
#include <dumux/discretization/cctpfa.hh>
30
#include <dumux/io/gnuplotinterface.hh>
31
#include <dumux/material/fluidsystems/1padapter.hh>
32
33
34
35
#include <dumux/material/fluidsystems/h2oair.hh>
#include <dumux/material/fluidmatrixinteractions/diffusivityconstanttortuosity.hh>

#include <dumux/porousmediumflow/problem.hh>
36
37
// TODO: dumux-course-task 2.A
// Include 2pnc model here
38
#include <dumux/porousmediumflow/1pnc/model.hh>
39
40
// TODO: dumux-course-task 2.A
// Include spatial params for a 2-phase system
41
42
43
44
45
#include "../1pspatialparams.hh"

namespace Dumux
{
template <class TypeTag>
46
class PorousMediumSubProblem;
47
48
49

namespace Properties
{
50
51
// Create new type tags
namespace TTag {
52
53
  // TODO: dumux-course-task 2.A
  // Change to property of the `FluidSystem` such that `H2OAir` is used directly.
54
struct DarcyOnePNC { using InheritsFrom = std::tuple<OnePNC, CCTpfaModel>; };
55
} // end namespace TTag
56
57

// Set the problem property
58
template<class TypeTag>
59
struct Problem<TypeTag, TTag::DarcyOnePNC> { using type = Dumux::PorousMediumSubProblem<TypeTag>; };
60
61

// The fluid system
62
template<class TypeTag>
63
struct FluidSystem<TypeTag, TTag::DarcyOnePNC>
64
{
65
    using H2OAir = FluidSystems::H2OAir<GetPropType<TypeTag, Properties::Scalar>>;
66
67
    using type = FluidSystems::OnePAdapter<H2OAir, H2OAir::gasPhaseIdx>;
};
68
69

// Use moles
70
template<class TypeTag>
71
struct UseMoles<TypeTag, TTag::DarcyOnePNC> { static constexpr bool value = true; };
72
73

// Do not replace one equation with a total mass balance
74
template<class TypeTag>
75
struct ReplaceCompEqIdx<TypeTag, TTag::DarcyOnePNC> { static constexpr int value = 3; };
76
77

//! Use a model with constant tortuosity for the effective diffusivity
78
template<class TypeTag>
Martin Schneider's avatar
Martin Schneider committed
79
struct EffectiveDiffusivityModel<TypeTag, TTag::DarcyOnePNC>
80
{ using type = DiffusivityConstantTortuosity<GetPropType<TypeTag, Properties::Scalar>>; };
81
// Set the grid type
82
template<class TypeTag>
83
struct Grid<TypeTag, TTag::DarcyOnePNC> { using type = Dune::YaspGrid<2>; };
84

85
86
87
88
// TODO: dumux-course-task 2.A
// Define new formulation for primary variables here.


89
// Set the spatial paramaters type
90
template<class TypeTag>
91
92
// TODO: dumux-course-task 2.A
// Adapt the spatial params here.
93
struct SpatialParams<TypeTag, TTag::DarcyOnePNC> {
94
    using type = OnePSpatialParams<GetPropType<TypeTag, GridGeometry>, GetPropType<TypeTag, Scalar>>;
95
96
97
};

} // end namespace Properties
98
99

template <class TypeTag>
100
class PorousMediumSubProblem : public PorousMediumFlowProblem<TypeTag>
101
102
{
    using ParentType = PorousMediumFlowProblem<TypeTag>;
103
104
105
106
107
108
    using GridView = GetPropType<TypeTag, Properties::GridView>;
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
    using NumEqVector = GetPropType<TypeTag, Properties::NumEqVector>;
    using BoundaryTypes = GetPropType<TypeTag, Properties::BoundaryTypes>;
109
    using FVElementGeometry = typename GetPropType<TypeTag, Properties::GridGeometry>::LocalView;
110
111
    using SubControlVolume = typename FVElementGeometry::SubControlVolume;
    using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace;
112
    using FVGridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
113
114
    using GridVariables = GetPropType<TypeTag, Properties::GridVariables>;
    using ElementFluxVariablesCache = typename GridVariables::GridFluxVariablesCache::LocalView;
115
116

    // copy some indices for convenience
117
    using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices;
118
119
120
121
122
123
124
125
    enum {
        // grid and world dimension
        dim = GridView::dimension,
        dimworld = GridView::dimensionworld,

        // primary variable indices
        conti0EqIdx = Indices::conti0EqIdx,
        pressureIdx = Indices::pressureIdx,
126
        phaseIdx = 0,
127
128
        // TODO: dumux-course-task 2.A
        // set the `transportCompIdx` to `Indices::switchIdx`.
129
        transportCompIdx = 1
130
131
132
133
134
    };

    using Element = typename GridView::template Codim<0>::Entity;
    using GlobalPosition = Dune::FieldVector<Scalar, dimworld>;

135
    using CouplingManager = GetPropType<TypeTag, Properties::CouplingManager>;
136
137
138
    using TimeLoopPtr = std::shared_ptr<TimeLoop<Scalar>>;

public:
139
    PorousMediumSubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry,
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
                   std::shared_ptr<CouplingManager> couplingManager)
    : ParentType(fvGridGeometry, "Darcy"), eps_(1e-7), couplingManager_(couplingManager)
    {
        moleFraction_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.MoleFraction");

        // initialize output file
        plotFluxes_ = getParamFromGroup<bool>(this->paramGroup(), "Problem.PlotFluxes", false);
        plotStorage_ = getParamFromGroup<bool>(this->paramGroup(), "Problem.PlotStorage", false);
        storageFileName_ = "storage_" + getParam<std::string>("Problem.Name") + "_" + this->name() + ".csv";
        storageFile_.open(storageFileName_);
        storageFile_ << "#Time[s]" << ";"
                     << "WaterMass[kg]" << ";"
                     << "WaterMassLoss[kg]" << ";"
                     << "EvaporationRate[mm/d]"
                     << std::endl;
    }

    /*!
     * \name Simulation steering
     */
    // \{

    /*!
     * \brief Initialize the problem.
     */
    template<class SolutionVector, class GridVariables>
    void init(const SolutionVector& curSol,
              const GridVariables& gridVariables)
168
169
170
171
172
    {
        // TODO: dumux-course-task 2.B
        // Initialize `initialWaterContent_` and assign that to `lastWaterMass_`.

    }
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

    template<class SolutionVector, class GridVariables>
    void postTimeStep(const SolutionVector& curSol,
                      const GridVariables& gridVariables)

    {
        evaluateWaterMassStorageTerm(curSol, gridVariables);
        evaluateInterfaceFluxes(curSol, gridVariables);

        gnuplotStorage_.resetPlot();
        gnuplotStorage_.setDatafileSeparator(';');
        gnuplotStorage_.setXlabel("time [d]");
        gnuplotStorage_.setXRange(0.0, getParam<Scalar>("TimeLoop.TEnd"));
        gnuplotStorage_.setYlabel("evaporation rate [mm/d]");
        gnuplotStorage_.setOption("set yrange [0.0:]");
        gnuplotStorage_.setOption("set y2label 'cumulative mass loss'");
        gnuplotStorage_.setOption("set y2range [0.0:0.5]");
        gnuplotStorage_.setOption("set y2range [0.0:0.5]");
        gnuplotStorage_.addFileToPlot(storageFileName_, "using 1:4 with lines title 'evaporation rate'");
        gnuplotStorage_.addFileToPlot(storageFileName_, "using 1:3 axes x1y2 with lines title 'cumulative mass loss'");
        if (plotStorage_)
            gnuplotStorage_.plot("temp");
    }

    template<class SolutionVector, class GridVariables>
    Scalar evaluateWaterMassStorageTerm(const SolutionVector& curSol,
                                        const GridVariables& gridVariables)

    {
        // compute the mass in the entire domain
        Scalar waterMass = 0.0;

205
        for (const auto& element : elements(this->gridGeometry().gridView()))
206
        {
207
            auto fvGeometry = localView(this->gridGeometry());
208
209
210
211
212
213
214
            fvGeometry.bindElement(element);

            auto elemVolVars = localView(gridVariables.curGridVolVars());
            elemVolVars.bindElement(element, fvGeometry, curSol);

            for (auto&& scv : scvs(fvGeometry))
            {
Timo Koch's avatar
Timo Koch committed
215
                // const auto& volVars = elemVolVars[scv];
216
217
218

                // TODO: dumux-course-task 2.B
                // Insert calculation of the water mass here
219
                waterMass += 0.0;
220
221
222
223
224
            }
        }

        Scalar cumMassLoss = initialWaterContent_ - waterMass;
        Scalar evaporationRate = (lastWaterMass_ - waterMass) * 86400
225
                                 / (this->gridGeometry().bBoxMax()[0] - this->gridGeometry().bBoxMin()[0])
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
                                 / timeLoop_->timeStepSize();
        lastWaterMass_ = waterMass;

        storageFile_ << timeLoop_->time() << ";"
                     << waterMass << ";"
                     << cumMassLoss << ";"
                     << evaporationRate
                     << std::endl;

        return waterMass;
    }

    template<class SolutionVector, class GridVariables>
    void evaluateInterfaceFluxes(const SolutionVector& curSol,
                                 const GridVariables& gridVariables)

    {
        std::vector<Scalar> x;
        std::vector<Scalar> y;

246
        for (const auto& element : elements(this->gridGeometry().gridView()))
247
        {
248
            auto fvGeometry = localView(this->gridGeometry());
249
250
251
252
253
254
255
256
257
258
            fvGeometry.bindElement(element);

            auto elemVolVars = localView(gridVariables.curGridVolVars());
            elemVolVars.bindElement(element, fvGeometry, curSol);

            for (auto&& scvf : scvfs(fvGeometry))
            {
                if (!couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf))
                    continue;

259
260
261
                // TODO: dumux-course-task 2.B
                // Use "massCouplingCondition" from the couplingManager here
                NumEqVector flux(0.0);
262
263
264
265
266
267
268
269

                x.push_back(scvf.center()[0]);
                y.push_back(flux[transportCompIdx]);
            }
        }

        gnuplotInterfaceFluxes_.resetPlot();
        gnuplotInterfaceFluxes_.setXlabel("x-position [m]");
270
        gnuplotInterfaceFluxes_.setXRange(this->gridGeometry().bBoxMin()[0], this->gridGeometry().bBoxMax()[0]);
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
        gnuplotInterfaceFluxes_.setYlabel("flux [kg/(m^2 s)]");
        gnuplotInterfaceFluxes_.setYRange(-5e-4, 0.0);
        gnuplotInterfaceFluxes_.setOption("set label 'time: " + std::to_string(timeLoop_->time()/86400.) + "d' at graph 0.8,0.8 ");
        std::string fluxFileName = "flux_" + std::to_string(timeLoop_->timeStepIndex()) +
                                   "_" + getParam<std::string>("Problem.Name") + "_" + this->name() + ".csv";
        gnuplotInterfaceFluxes_.addDataSetToPlot(x, y, fluxFileName, "with lines title 'water mass flux'");
        if (plotFluxes_)
            gnuplotInterfaceFluxes_.plot("flux_" + std::to_string(timeLoop_->timeStepIndex()));
    }

    /*!
     * \name Problem parameters
     */
    // \{

    /*!
     * \brief Return the temperature within the domain in [K].
     *
     */
    Scalar temperature() const
    { return 293.15; }
    // \}

    /*!
     * \name Boundary conditions
     */
    // \{

    /*!
      * \brief Specifies which kind of boundary condition should be
      *        used for which equation on a given boundary control volume.
      *
      * \param element The element
      * \param scvf The boundary sub control volume face
      */
    BoundaryTypes boundaryTypes(const Element& element, const SubControlVolumeFace& scvf) const
    {
        BoundaryTypes values;
        values.setAllNeumann();

        if (couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf))
            values.setAllCouplingNeumann();

        return values;
    }

    /*!
     * \brief Evaluate the boundary conditions for a Neumann control volume.
     *
     * \param element The element for which the Neumann boundary condition is set
     * \param fvGeomentry The fvGeometry
     * \param elemVolVars The element volume variables
     * \param scvf The boundary sub control volume face
     *
     * For this method, the \a values variable stores primary variables.
     */
    template<class ElementVolumeVariables>
    NumEqVector neumann(const Element& element,
                        const FVElementGeometry& fvGeometry,
                        const ElementVolumeVariables& elemVolVars,
331
                        const ElementFluxVariablesCache& elemFluxVarsCache,
332
333
334
335
336
                        const SubControlVolumeFace& scvf) const
    {
        NumEqVector values(0.0);

        if (couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf))
337
            values = couplingManager().couplingData().massCouplingCondition(element, fvGeometry, elemVolVars, scvf);
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

        return values;
    }

    // \}

    /*!
     * \name Volume terms
     */
    // \{
    /*!
     * \brief Evaluate the source term for all phases within a given
     *        sub-control-volume.
     *
     * \param element The element for which the source term is set
     * \param fvGeomentry The fvGeometry
     * \param elemVolVars The element volume variables
     * \param scv The subcontrolvolume
     */
    template<class ElementVolumeVariables>
358
    NumEqVector source(const Element& element,
359
360
                       const FVElementGeometry& fvGeometry,
                       const ElementVolumeVariables& elemVolVars,
361
                       const SubControlVolume& scv) const
362
363
364
365
366
367
368
369
370
371
372
373
    { return NumEqVector(0.0); }

    // \}

    /*!
     * \brief Evaluate the initial value for a control volume.
     *
     * \param element The element
     *
     * For this method, the \a priVars parameter stores primary
     * variables.
     */
374
    PrimaryVariables initialAtPos(const GlobalPosition& globalPos) const
375
    {
376
377
        static const Scalar stokesPressure = getParamFromGroup<Scalar>("Stokes", "Problem.Pressure");

378
        PrimaryVariables values(0.0);
379
380
381
382

        // TODO: dumux-course-task 2.A
        // Declare here which phases are present.

383
        values[Indices::pressureIdx] = stokesPressure;
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
        values[transportCompIdx] = moleFraction_;
        return values;
    }

    // \}

    //! Set the coupling manager
    void setCouplingManager(std::shared_ptr<CouplingManager> cm)
    { couplingManager_ = cm; }

    //! Get the coupling manager
    const CouplingManager& couplingManager() const
    { return *couplingManager_; }

    void setTimeLoop(TimeLoopPtr timeLoop)
    { timeLoop_ = timeLoop; }

private:
    bool onLeftBoundary_(const GlobalPosition &globalPos) const
403
    { return globalPos[0] < this->gridGeometry().bBoxMin()[0] + eps_; }
404
405

    bool onRightBoundary_(const GlobalPosition &globalPos) const
406
    { return globalPos[0] > this->gridGeometry().bBoxMax()[0] - eps_; }
407
408

    bool onLowerBoundary_(const GlobalPosition &globalPos) const
409
    { return globalPos[1] < this->gridGeometry().bBoxMin()[1] + eps_; }
410
411

    bool onUpperBoundary_(const GlobalPosition &globalPos) const
412
    { return globalPos[1] > this->gridGeometry().bBoxMax()[1] - eps_; }
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

    Scalar eps_;
    Scalar moleFraction_;

    Scalar initialWaterContent_ = 0.0;
    Scalar lastWaterMass_ = 0.0;

    TimeLoopPtr timeLoop_;
    std::shared_ptr<CouplingManager> couplingManager_;

    std::string storageFileName_;
    std::ofstream storageFile_;
    bool plotFluxes_;
    bool plotStorage_;
    Dumux::GnuplotInterface<Scalar> gnuplotInterfaceFluxes_;
    Dumux::GnuplotInterface<Scalar> gnuplotStorage_;
};
430
} //end namespace Dumux
431
432

#endif //DUMUX_DARCY_SUBPROBLEM_HH