diff --git a/slides/biomin.md b/slides/biomin.md index 05e43c58ec79025e28d3ba2bee5598d9b25d9c2d..df06232b5e364cee57535a0e99784815d7e47581 100644 --- a/slides/biomin.md +++ b/slides/biomin.md @@ -181,14 +181,15 @@ $$ ::: ::: {.column width=55%} * Clogging: Reduction of porosity - $$ - \phi = \phi_0 - \phi_\text{biofilm} - \phi_\text{calcite} - $$ +$$ +\phi = \phi_0 - \phi_\text{biofilm} - \phi_\text{calcite} +$$ + * and reduction in permeability: Kozeny-Carman relation - $$ - K = K_0 \left( \frac{1-\phi_0}{1-\phi} \right)^2 \left( \frac{\phi}{\phi_0} \right)^3 - $$ - or the Power Law +$$ +K = K_0 \left( \frac{1-\phi_0}{1-\phi} \right)^2 \left( \frac{\phi}{\phi_0} \right)^3 +$$ +or the Power Law ::: :::::: @@ -199,15 +200,14 @@ $$ :::incremental * Mass balance equation of components - $$ - \Sigma_\alpha \frac{\partial}{\partial t} - (\phi \rho_\alpha x^\kappa_\alpha S_\alpha) - + \nabla \cdot ( \rho_\alpha x^\kappa_\alpha \mathbf{v}_\alpha ) - - \nabla \cdot ( \rho_\alpha \mathbf{D}^\kappa_{\alpha;\text{pm}} \nabla x^\kappa_\alpha ) - = q^\kappa - $$ +$$ +\Sigma_\alpha \frac{\partial}{\partial t}(\phi \rho_\alpha x^\kappa_\alpha S_\alpha)+ \nabla \cdot ( \rho_\alpha x^\kappa_\alpha \mathbf{v}_\alpha )- \nabla \cdot ( \rho_\alpha \mathbf{D}^\kappa_{\alpha;\text{pm}} \nabla x^\kappa_\alpha )= q^\kappa +$$ + * Mass balance for the immobile components / solid phases: - $$\frac{\partial}{\partial t}(\rho_\varphi \phi_\varphi) = q^\varphi$$ +$$ +\frac{\partial}{\partial t}(\rho_\varphi \phi_\varphi) = q^\varphi +$$ ::: @@ -306,20 +306,19 @@ NumEqVector source(const Element& element, * Update porosity in dumux/material/fluidmatrixinteractions/porosityprecipitation.hh -<section style="font-size: 0.9em"> ```cpp … -auto priVars = evalSolution(element, element.geometry(), elemSol, scv.center()); +auto priVars = evalSolution(element, element.geometry(), + elemSol, scv.center()); Scalar sumPrecipitates = 0.0; -for (unsigned int solidPhaseIdx = 0; solidPhaseIdx < numSolidPhases; ++solidPhaseIdx) +for (int solidPhaseIdx = 0; solidPhaseIdx < numSolidPhases; ++solidPhaseIdx) sumPrecipitates += priVars[numComp + solidPhaseIdx]; using std::max; return max(minPoro, refPoro - sumPrecipitates); … ``` -</section> ## Specific Implementations diff --git a/slides/fractures.md b/slides/fractures.md index 6774341b07d8910ecde6f550f71c522c05c6bcd0..71c31018b339fa388982ee631d6c3d43dae06224 100644 --- a/slides/fractures.md +++ b/slides/fractures.md @@ -61,18 +61,16 @@ Geothermal energy production ## Problem Formulation -<font size=6> -$\begin{equation} - \begin{aligned} - \mathbf{u}_i &= - \mathbf{K}_i \nabla p_i, \\ - \nabla \cdot \mathbf{u}_i &= q_i, &&\mathrm{in} \, \Omega_i, \\ - \mathbf{U}_f &=- a \mathbf{K}_{f, \tau} \nabla_\tau P_f, \\ - \nabla_\tau \cdot\mathbf{U}_f &= q_f + \left( \mathbf{u}_1 \cdot \mathbf{n}_1 + \mathbf{u}_2 \cdot \mathbf{n}_2 \right), \\ - \mathbf{u}_i \cdot \mathbf{n}_i &= - \frac{2 k_\eta}{a} ( P_f - p_i ), &&\mathrm{in} \, \gamma_N, \\ - P_f &= p_i, &&\mathrm{in} \, \gamma_D. - \end{aligned} -\end{equation}$ -</font> +$$ +\begin{aligned} + \mathbf{u}_i &= - \mathbf{K}_i \nabla p_i, \\ + \nabla \cdot \mathbf{u}_i &= q_i, &&\mathrm{in} \, \Omega_i, \\ + \mathbf{U}_f &=- a \mathbf{K}_{f, \tau} \nabla_\tau P_f, \\ + \nabla_\tau \cdot\mathbf{U}_f &= q_f + \left( \mathbf{u}_1 \cdot \mathbf{n}_1 + \mathbf{u}_2 \cdot \mathbf{n}_2 \right), \\ + \mathbf{u}_i \cdot \mathbf{n}_i &= - \frac{2 k_\eta}{a} ( P_f - p_i ), &&\mathrm{in} \, \gamma_N, \\ + P_f &= p_i, &&\mathrm{in} \, \gamma_D. +\end{aligned} +$$ # Fracture exercise diff --git a/slides/intro.md b/slides/intro.md index 225eefa977024caefc85e9413806bcc6caf099c5..732d3ab18dfa4892f63c4459be560ac32c39589a 100644 --- a/slides/intro.md +++ b/slides/intro.md @@ -3,7 +3,6 @@ title: Introduction to DuMu^x^ subtitle: Overview and Available Models --- - # Table of Contents ## Table of Contents @@ -138,13 +137,15 @@ Preimplemented models: * Describes the advective flux in porous media on the macro-scale * Single-phase flow - - $$\mathbf{v} = - \frac{\mathbf{K}}{\mu} \left(\textbf{grad}\, p - \varrho \mathbf{g} \right)$$ +$$ +\mathbf{v} = - \frac{\mathbf{K}}{\mu} \left(\textbf{grad}\, p - \varrho \mathbf{g} \right) +$$ * Multi-phase flow (phase $\alpha$) - - $$\mathbf{v}_\alpha = - \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\textbf{grad}\, p_\alpha - \varrho_\alpha \mathbf{g} \right)$$ - where $k_{r\alpha}(S_\alpha)$ is the relative permeability, a function of saturation $S_\alpha$. +$$ +\mathbf{v}_\alpha = - \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\textbf{grad}\, p_\alpha - \varrho_\alpha \mathbf{g} \right) +$$ +where $k_{r\alpha}(S_\alpha)$ is the relative permeability, a function of saturation $S_\alpha$. * For non-creeping flow, Forchheimer's law is available as an alternative. @@ -152,8 +153,9 @@ Preimplemented models: * Uses standard Darcy approach for the conservation of momentum by default * Mass continuity equation - - $$\frac{\partial\left( \phi \varrho \right)}{\partial t} + \text{div} \left( \varrho \mathbf{v} \right) = q$$ +$$ +\frac{\partial\left( \phi \varrho \right)}{\partial t} + \text{div} \left( \varrho \mathbf{v} \right) = q +$$ * Primary variable: $p$ @@ -163,8 +165,9 @@ Preimplemented models: * Uses standard Darcy approach for the conservation of momentum by default * Transport of component $\kappa \in \{\text{H2O}, \text{Air}, ...\}$ - - $$\frac{\partial\left( \phi \varrho X^\kappa \right)}{\partial t} + \text{div} \left( \varrho X^\kappa \mathbf{v} - \varrho D^\kappa_\text{pm} \textbf{grad} X^\kappa \right) = q$$ +$$ +\frac{\partial\left( \phi \varrho X^\kappa \right)}{\partial t} + \text{div} \left( \varrho X^\kappa \mathbf{v} - \varrho D^\kappa_\text{pm} \textbf{grad} X^\kappa \right) = q +$$ * Closure relation: $\sum_\kappa X^\kappa = 1$ * Primary variables: $p$ and $X^\kappa$ @@ -174,13 +177,14 @@ Preimplemented models: ## 1pncmin -- with Fluid-Solid Phase Change * Transport equation for each component $\kappa \in \{\text{H2O}, \text{Air}, ...\}$ - - $$\frac{\partial \left( \varrho_f X^\kappa \phi \right)}{\partial t} - + \text{div} \left( \varrho_f X^\kappa \mathbf{v} - \mathbf{D_\text{pm}^\kappa} \varrho_f \textbf{grad}\, X^\kappa \right) = q_\kappa$$ +$$ +\frac{\partial \left( \varrho_f X^\kappa \phi \right)}{\partial t} + \text{div} \left( \varrho_f X^\kappa \mathbf{v} - \mathbf{D_\text{pm}^\kappa} \varrho_f \textbf{grad}\, X^\kappa \right) = q_\kappa +$$ * Mass balance solid phases - - $$\frac{\partial \left(\varrho_\lambda \phi_\lambda \right)}{\partial t} = q_\lambda$$ +$$ +\frac{\partial \left(\varrho_\lambda \phi_\lambda \right)}{\partial t} = q_\lambda +$$ * Primary variables: $p$, $X^k$ and $\phi_\lambda$ @@ -190,8 +194,9 @@ Preimplemented models: * Uses standard multi-phase Darcy approach for the conservation of momentum by default * Conservation of the phase mass of phase $\alpha \in \{\text{w}, \text{n}\}$ - - $$\frac{\partial \left( \phi \varrho_\alpha S_\alpha \right)}{\partial t} + \text{div} \left(\varrho_\alpha \mathbf{v}_\alpha \right) = q_\alpha$$ +$$ +\frac{\partial \left(\phi \varrho_\alpha S_\alpha \right)}{\partial t} + \text{div} \left(\varrho_\alpha \mathbf{v}_\alpha \right) = q_\alpha +$$ * Constitutive relations: $p_\text{c} := p_\text{n} - p_\text{w} = p_\text{c}(S_\text{w})$, $k_{r\alpha}$ = $k_{r\alpha}(S_\text{w})$ * Physical constraint (void space filled with fluid phases): $S_\text{w} + S_\text{n} = 1$ @@ -202,8 +207,11 @@ Preimplemented models: ## 2pnc -- Two-Phase Compositional * Transport equation for each component $\kappa \in \{\text{H2O}, \text{Air}, ...\}$ in phase $\alpha \in \{\text{w}, \text{n}\}$ - - $$\begin{aligned}\frac{\partial \left( \sum_\alpha \varrho_\alpha X_\alpha^\kappa \phi S_\alpha \right)}{\partial t} &+ \sum_\alpha \text{div} \left( \varrho_\alpha X_\alpha^\kappa \mathbf{v}_\alpha - \mathbf{D_{\alpha, pm}^\kappa} \varrho_\alpha \textbf{grad}\, X^\kappa_\alpha \right) = \sum_\alpha q_\alpha^\kappa \end{aligned}$$ +$$ +\begin{aligned} +\frac{\partial \left( \sum_\alpha \varrho_\alpha X_\alpha^\kappa \phi S_\alpha \right)}{\partial t} &+ \sum_\alpha \text{div}\left( \varrho_\alpha X_\alpha^\kappa \mathbf{v}_\alpha - \mathbf{D_{\alpha, pm}^\kappa} \varrho_\alpha \textbf{grad}\, X^\kappa_\alpha \right) = \sum_\alpha q_\alpha^\kappa +\end{aligned} +$$ * Constitutive relation: $p_\text{c} := p_\text{n} - p_\text{w} = p_\text{c}(S_\text{w})$, $k_{r\alpha}$ = $k_{r\alpha}(S_\text{w})$ * Physical constraints: $S_\text{w} + S_\text{n} = 1$ and $\sum_\kappa X_\alpha^\kappa = 1$ @@ -214,12 +222,16 @@ Preimplemented models: ## 2pncmin * Transport equation for each component $\kappa \in \{\text{H2O}, \text{Air}, ...\}$ - - $$\begin{aligned}\frac{\partial \left( \sum_\alpha \varrho_\alpha X_\alpha^\kappa \phi S_\alpha \right)}{\partial t} &+ \sum_\alpha \text{div} \left( \varrho_\alpha X_\alpha^\kappa \mathbf{v}_\alpha - \mathbf{D_{\alpha, pm}^\kappa} \varrho_\alpha \textbf{grad}\, X^\kappa_\alpha \right) = \sum_\alpha q_\alpha^\kappa \end{aligned}$$ +$$ +\begin{aligned} +\frac{\partial \left( \sum_\alpha \varrho_\alpha X_\alpha^\kappa \phi S_\alpha \right)}{\partial t} &+ \sum_\alpha \text{div}\left( \varrho_\alpha X_\alpha^\kappa \mathbf{v}_\alpha - \mathbf{D_{\alpha, pm}^\kappa} \varrho_\alpha \textbf{grad}\, X^\kappa_\alpha \right)= \sum_\alpha q_\alpha^\kappa +\end{aligned} +$$ * Mass balance solid phases - - $$\frac{\partial \left(\varrho_\lambda \phi_\lambda \right)}{\partial t} = q_\lambda \quad \forall \lambda \in \Lambda$$ +$$ +\frac{\partial \left(\varrho_\lambda \phi_\lambda \right)}{\partial t} = q_\lambda \quad \forall \lambda \in \Lambda +$$ for a set of solid phases $\Lambda$ each with volume fraction $\varrho_\lambda$ * Source term models **dissolution/precipiation/phase transition** fluid ↔ solid @@ -230,8 +242,9 @@ for a set of solid phases $\Lambda$ each with volume fraction $\varrho_\lambda$ * Uses standard multi-phase Darcy approach for the conservation of momentum by default * Conservation of the phase mass of phase $\alpha \in \{\text{w}, \text{g}, \text{n}\}$ - - $$\frac{\partial \left( \phi \varrho_\alpha S_\alpha \right)}{\partial t} - \text{div} \left( \varrho_\alpha \mathbf{v}_\alpha \right) = q_\alpha$$ +$$ +\frac{\partial \left( \phi \varrho_\alpha S_\alpha \right)}{\partial t} - \text{div} \left( \varrho_\alpha \mathbf{v}_\alpha \right) = q_\alpha +$$ * Physical constraint: $S_\text{w} + S_\text{n} + S_g = 1$ * Primary variables: $p_\text{g}$, $S_\text{w}$, $S_\text{n}$ @@ -241,9 +254,11 @@ for a set of solid phases $\Lambda$ each with volume fraction $\varrho_\lambda$ ## 3p3c -- Three-Phase Compositional * Transport equation for each component $\kappa \in \{\text{H2O}, \text{Air}, \text{NAPL}\}$ in phase $\alpha \in \{\text{w}, \text{g}, \text{n}\}$ - - $$\begin{aligned}\frac{\partial \left( \phi \sum_\alpha \varrho_{\alpha,\text{mol}} x_\alpha^\kappa S_\alpha \right)}{\partial t} - &+ \sum_\alpha \text{div} \left( \varrho_{\alpha,\text{mol}} x_\alpha^\kappa \mathbf{v}_\alpha - D_\text{pm}^\kappa \frac{1}{M_\kappa} \varrho_\alpha \textbf{grad} X^\kappa_{\alpha} \right) = q^\kappa \end{aligned}$$ +$$ +\begin{aligned} +\frac{\partial \left( \phi \sum_\alpha \varrho_{\alpha,\text{mol}} x_\alpha^\kappa S_\alpha \right)}{\partial t}&+ \sum_\alpha \text{div} \left( \varrho_{\alpha,\text{mol}} x_\alpha^\kappa \mathbf{v}_\alpha - D_\text{pm}^\kappa \frac{1}{M_\kappa} \varrho_\alpha \textbf{grad} X^\kappa_{\alpha} \right) = q^\kappa +\end{aligned} +$$ * Physical constraints: $\sum_\alpha S_\alpha = 1$ and $\sum_\kappa x^\kappa_\alpha = 1$ * Primary variables: depend on the locally present fluid phases @@ -269,9 +284,11 @@ for a set of solid phases $\Lambda$ each with volume fraction $\varrho_\lambda$ * Local thermal equilibrium assumption * One energy conservation equation for the porous solid matrix and the fluids - $$\begin{aligned}\frac{\partial \left( \phi \sum_\alpha \varrho_\alpha u_\alpha S_\alpha \right)}{\partial t} &+ \frac{\partial \left(\left(1 - \phi \right)\varrho_s c_s T \right)}{\partial t} + $$ + \begin{aligned}\frac{\partial \left( \phi \sum_\alpha \varrho_\alpha u_\alpha S_\alpha \right)}{\partial t} &+ \frac{\partial \left(\left(1 - \phi \right)\varrho_s c_s T \right)}{\partial t} + \sum_\alpha \text{div} \left( \varrho_\alpha h_\alpha \mathbf{v}_\alpha \right) - - \text{div} \left(\lambda_\text{pm} \textbf{grad}\, T \right) = q^h \end{aligned}$$ + - \text{div} \left(\lambda_\text{pm} \textbf{grad}\, T \right) = q^h \end{aligned} + $$ * Specific internal energy $u_\alpha = h_\alpha - p_\alpha / \varrho_\alpha$ * Can be added to other models, additional primary variable temperature $T$ @@ -288,12 +305,16 @@ for a set of solid phases $\Lambda$ each with volume fraction $\varrho_\lambda$ * Momentum balance equation for a single-phase, isothermal RANS model - $$\frac{\partial \left(\varrho \textbf{v} \right)}{\partial t} + \nabla \cdot \left(\varrho \textbf{v} \textbf{v}^{\text{T}} \right) = \nabla \cdot \left(\mu_\textrm{eff} \left(\nabla \textbf{v} + \nabla \textbf{v}^{\text{T}} \right) \right) - - \nabla p + \varrho \textbf{g} - \textbf{f}$$ + $$ + \frac{\partial \left(\varrho \textbf{v} \right)}{\partial t} + \nabla \cdot \left(\varrho \textbf{v} \textbf{v}^{\text{T}} \right) = \nabla \cdot \left(\mu_\textrm{eff} \left(\nabla \textbf{v} + \nabla \textbf{v}^{\text{T}} \right) \right) + - \nabla p + \varrho \textbf{g} - \textbf{f} + $$ * The effective viscosity is composed of the fluid and the eddy viscosity - $$\mu_\textrm{eff} = \mu + \mu_\textrm{t}$$ + $$ + \mu_\textrm{eff} = \mu + \mu_\textrm{t} + $$ * Various turbulence models are implemented diff --git a/slides/materialsystem.md b/slides/materialsystem.md index b8dbc75a6c8c34b56acfd9b197286dde85d6df07..d061b5603b5c59f20bfd8c263da81e0269959528 100644 --- a/slides/materialsystem.md +++ b/slides/materialsystem.md @@ -177,6 +177,7 @@ _Specifying a solid system is only necessary if you work with a non-isothermal o * Effective diffusivity after _Millington and Quirk_ ## Van-Genuchten + $\begin{equation} p_c = \frac{1}{\alpha}\left(S_e^{-1/m} -1\right)^{1/n} \end{equation}$ @@ -186,6 +187,7 @@ p_c = \frac{1}{\alpha}\left(S_e^{-1/m} -1\right)^{1/n} $\rightarrow$ the empirical parameters $\alpha$ and $n$ have to be specified ## Brooks-Corey + $\begin{equation} p_c = p_d S_e^{-1/\lambda} \end{equation}$ diff --git a/slides/problem.md b/slides/problem.md index 86148e3f4f5148404e8cdc12ee2918556602beae..3ab8baade6d12ec3683f52342bc4913a119a52c4 100644 --- a/slides/problem.md +++ b/slides/problem.md @@ -7,30 +7,34 @@ title: DuMu^x^ applications ## Gas injection / immiscible two phase flow Mass balance equations for two fluid phases: - -$\begin{aligned} +$$ +\begin{aligned} \frac{\partial \left(\phi \varrho_\alpha S_\alpha \right)}{\partial t} - \nabla \cdot \boldsymbol{v}_\alpha - q_\alpha = 0, \quad \alpha \in \lbrace w, n \rbrace. -\end{aligned}$ +\end{aligned} +$$ Momentum balance equations (multiphase-phase Darcy's law): - -$\begin{aligned} +$$ +\begin{aligned} \boldsymbol{v}_\alpha = \varrho_\alpha \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\nabla\, p_\alpha - \varrho_{\alpha} \mathbf{g} \right), \quad \alpha \in \lbrace w, n \rbrace. -\end{aligned}$ +\end{aligned} +$$ ## Gas injection / immiscible two phase flow -$\begin{aligned} +$$ +\begin{aligned} \frac{\partial \left(\phi \varrho_\alpha S_\alpha \right)}{\partial t} - \nabla \cdot \left( \varrho_\alpha \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\nabla\, p_\alpha - \varrho_{\alpha} \mathbf{g} \right) \right) - q_\alpha = 0 -\end{aligned}$ +\end{aligned} +$$ * $p_w$, $p_n$: wetting and non-wetting fluid phase pressure * $\varrho_\alpha$, $\mu_\alpha$: fluid phase density and dynamic viscosity @@ -40,13 +44,15 @@ $\begin{aligned} ## Gas injection / immiscible two phase flow -$\begin{aligned} +$$ +\begin{aligned} \frac{\partial \left(\phi \varrho_\alpha S_\alpha \right)}{\partial t} - \nabla \cdot \left( \varrho_\alpha \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\nabla\, p_\alpha - \varrho_{\alpha} \mathbf{g} \right) \right) - q_\alpha = 0 -\end{aligned}$ +\end{aligned} +$$ * Constitutive relations: $p_n := p_w + p_c$, $p_c := p_c(S_w)$, $k_{r\alpha}$ = $k_{r\alpha}(S_w)$ * Physical constraint (no free space): $S_w + S_n = 1$