diff --git a/slides/coupled_ff-pm.md b/slides/coupled_ff-pm.md index 5ee62f16749428aebc013fce8ba0311ebbf72d8d..105f07dfdaa617c77ed70cdd88bb745990e32955 100644 --- a/slides/coupled_ff-pm.md +++ b/slides/coupled_ff-pm.md @@ -42,7 +42,7 @@ Fig.3 - Brain tissue (Koch et al. (2020))<sup>3</sup> * Brain tissue * Leaf structure -# Model Overview +# Model Overview ## Conceptual Physical Model <img src=img/FFPM-PhysicalModelOverview.png width="80%"> @@ -68,8 +68,8 @@ Fig.5 - Exchange processes at the free-flow porous-medium interface at different **Freeflow:** -* Stokes / Navier-Stokes / RANS -* 1-phase, n-components, non-equilibrium +* Stokes / Navier-Stokes / RANS +* 1-phase, n-components, non-equilibrium **Interface condtions:** @@ -92,7 +92,7 @@ Fig.5 - Exchange processes at the free-flow porous-medium interface at different * Total mass balance $$ -\frac{\partial \rho_g \textbf{v}_g}{\partial t} + \nabla \cdot (\rho_g \textbf{v}_g \textbf{v}_g^T) - \nabla \cdot (\mathbf{\tau}_g + \mathbf{\tau}_{g,t}) +\nabla \cdot (p_g\textbf{I})- \rho_g \textbf{g} = 0 +\frac{\partial \rho_g \textbf{v}_g}{\partial t} + \nabla \cdot (\rho_g \textbf{v}_g \textbf{v}_g^T) - \nabla \cdot (\mathbf{\tau}_g + \mathbf{\tau}_{g,t}) +\nabla \cdot (p_g\textbf{I})- \rho_g \textbf{g} = 0 $$ * Momentum balance @@ -112,17 +112,17 @@ $$ * Component mass balance $$ -\sum\limits_{\alpha \in \{\text{l, g} \}} \left(\phi \frac{\partial \left(\rho_\alpha S_\alpha X_\alpha^\kappa\right)}{\partial t } + \nabla \cdot \textbf{v}_\alpha\rho_\alpha X_\alpha^\kappa + \sum_\kappa \nabla \cdot \left( \textbf{D}_{pm,\alpha}^\kappa\rho_\alpha\nabla X_\alpha^\kappa \right)\right) = 0 +\sum\limits_{\alpha \in \{\text{l, g} \}} \left(\phi \frac{\partial \left(\rho_\alpha S_\alpha X_\alpha^\kappa\right)}{\partial t } + \nabla \cdot \textbf{v}_\alpha\rho_\alpha X_\alpha^\kappa + \sum_\kappa \nabla \cdot \left( \textbf{D}_{pm,\alpha}^\kappa\rho_\alpha\nabla X_\alpha^\kappa \right)\right) = 0 $$ * Darcy velocity $$ -\textbf{v}_\alpha = - \frac{k_{r,\alpha}}{\mu_\alpha} K \left(\nabla p_\alpha - \rho_\alpha \textbf{g}\right) +\textbf{v}_\alpha = - \frac{k_{r,\alpha}}{\mu_\alpha} K \left(\nabla p_\alpha - \rho_\alpha \textbf{g}\right) $$ * Energy balance $$ -\sum\limits_{\alpha \in \{\text{l, g} \}}\left(\phi\frac{\partial \left(\rho_\alpha S_\alpha u_\alpha\right)}{\partial t} + \nabla \cdot \left(\rho_\alpha h_\alpha \textbf{v}_\alpha \right)\right) + \left(1-\phi\right) \frac{\partial \left(\rho_s c_{p,s}T\right)}{\partial t} - \nabla\cdot \left(\lambda_{pm} \nabla T \right) = 0 +\sum\limits_{\alpha \in \{\text{l, g} \}}\left(\phi\frac{\partial \left(\rho_\alpha S_\alpha u_\alpha\right)}{\partial t} + \nabla \cdot \left(\rho_\alpha h_\alpha \textbf{v}_\alpha \right)\right) + \left(1-\phi\right) \frac{\partial \left(\rho_s c_{p,s}T\right)}{\partial t} - \nabla\cdot \left(\lambda_{pm} \nabla T \right) = 0 $$ @@ -140,24 +140,24 @@ $$ * Momentum (tangential)condition $$ -\left[\left(- \textbf{v}_g - \frac{\sqrt{(\textbf{K}\textbf{t}_i)\cdot \textbf{t}_i}}{\alpha_{BJ}} (\nabla \textbf{v}_g + \nabla \textbf{v}_g^T)\textbf{n} \right) \cdot \textbf{t}_i \right]^{\text{ff}} = 0\, , \quad i \in \{1, .. ,\, d-1\}\, +\left[\left(- \textbf{v}_g - \frac{\sqrt{(\textbf{K}\textbf{t}_i)\cdot \textbf{t}_i}}{\alpha_{BJ}} (\nabla \textbf{v}_g + \nabla \textbf{v}_g^T)\textbf{n} \right) \cdot \textbf{t}_i \right]^{\text{ff}} = 0\, , \quad i \in \{1, .. ,\, d-1\}\, $$ ## Mathematical Model: Coupling Conditions * Momentum (normal) condition $$ -[((\rho_g \textbf{v}_g \textbf{v}_g^T - (\mathbf{\tau}_g + \mathbf{\tau}_{g,t}) + p_g\textbf{I}) \textbf{n} )]^{\text{ff}} = [(p_g\textbf{I})\textbf{n}]^{\text{pm}}\, +[((\rho_g \textbf{v}_g \textbf{v}_g^T - (\mathbf{\tau}_g + \mathbf{\tau}_{g,t}) + p_g\textbf{I}) \textbf{n} )]^{\text{ff}} = [(p_g\textbf{I})\textbf{n}]^{\text{pm}}\, $$ * Component mass condition $$ -[(\rho_g X_g^\kappa \textbf{v}_g + \textbf{j}_{\text{diff}, t}) \cdot \textbf{n}]^{\text{ff}} = - \left[\left( \sum_{\alpha} (\rho_{\alpha} X_{\alpha}^\kappa \textbf{v}_\alpha + \textbf{j}^\kappa_{\text{diff}, \alpha})\right) \cdot \textbf{n}\right]^{\text{pm}}\, +[(\rho_g X_g^\kappa \textbf{v}_g + \textbf{j}_{\text{diff}, t}) \cdot \textbf{n}]^{\text{ff}} = - \left[\left( \sum_{\alpha} (\rho_{\alpha} X_{\alpha}^\kappa \textbf{v}_\alpha + \textbf{j}^\kappa_{\text{diff}, \alpha})\right) \cdot \textbf{n}\right]^{\text{pm}}\, $$ -* Energy condition +* Energy condition $$ -\left[\left(\rho_g h_g \textbf{v}_g + \sum_i h_g^\kappa \textbf{j}_{\text{diff},g}^\kappa + \lambda_{g}\nabla T\right)\cdot \textbf{n}\right]^{\text{ff}} = - \left[\left( \sum_\alpha (\rho_\alpha h_\alpha \textbf{v}_\alpha + \sum_i h_\alpha^\kappa \textbf{j}_{\text{diff},\alpha}^\kappa) - \lambda_{\text{pm}}\nabla T\right)\cdot \textbf{n}\right]^{\text{pm}}\, +\left[\left(\rho_g h_g \textbf{v}_g + \sum_i h_g^\kappa \textbf{j}_{\text{diff},g}^\kappa + \lambda_{g}\nabla T\right)\cdot \textbf{n}\right]^{\text{ff}} = - \left[\left( \sum_\alpha (\rho_\alpha h_\alpha \textbf{v}_\alpha + \sum_i h_\alpha^\kappa \textbf{j}_{\text{diff},\alpha}^\kappa) - \lambda_{\text{pm}}\nabla T\right)\cdot \textbf{n}\right]^{\text{pm}}\, $$ ## Numerical Model: Coupled Model @@ -203,15 +203,15 @@ Fig.8 - Different evaporation stages (Or et al.(2013))<sup>6</sup> <font size = "5"> -| Parameter | Value | +| Parameter | Value | |:----------------------------|--------------:| | $\textbf{v}_g^{ff}$ [m/s] | (3.5,0)$^T$ | -| $p_g^{ff}$ [Pa] | 1e5 | -| $X_g^{w,ff}$ [-] | 0.008 | -| $T^{ff}$ [K] | 298.15 | -| $p_g^{pm}$ [Pa] | 1e5 | -| $S_l^{pm}$ [-] | 0.98 | -| $T^{pm}$ [K] | 298.15 | +| $p_g^{ff}$ [Pa] | 1e5 | +| $X_g^{w,ff}$ [-] | 0.008 | +| $T^{ff}$ [K] | 298.15 | +| $p_g^{pm}$ [Pa] | 1e5 | +| $S_l^{pm}$ [-] | 0.98 | +| $T^{pm}$ [K] | 298.15 | </font> @@ -264,7 +264,7 @@ _Tasks_ <font size = "5"> -1. Heck, K., Coltman, E., Schneider, J., & Helmig, R. (2020). Influence of radiation on evaporation rates: A numerical analysis. Water Resources Research, 56, e2020WR027332. https://doi.org/10.1029/2020WR027332 +1. Heck, K., Coltman, E., Schneider, J., & Helmig, R. (2020). Influence of radiation on evaporation rates: A numerical analysis. Water Resources Research, 56, e2020WR027332. https://doi.org/10.1029/2020WR027332 2. Schneider, M., Gläser, D., Weishaupt, K., Coltman, E., Flemisch, B., Helmig, R. (2023). Coupling staggered-grid and vertex-centered finite-volume methods for coupled porous-medium free-flow problems. Journal of Computational Physics. 112042. https://doi.org/10.1016/j.jcp.2023.112042. @@ -272,8 +272,8 @@ _Tasks_ 4. Fetzer, Thomas: Coupled Free and Porous-Medium Flow Processes Affected by Turbulence and Roughness – Models, Concepts and Analysis, Universität Stuttgart. - Stuttgart: Institut für Wasser- und Umweltsystemmodellierung, 2018 -5. Or, D., Lehmann, P., Shahraeeni, E. and Shokri, N. (2013), Advances in Soil Evaporation Physics—A Review. Vadose Zone Journal, 12: 1-16 vzj2012.0163. https://doi.org/10.2136/vzj2012.0163 +5. Shahraeeni, Ebrahim & Or, Dani. (2012). Coupling of evaporative fluxes from drying porous surfaces with air boundary layer: Characteristics of evaporation from discrete pores. Water Resources Research. 48. 9525-. 10.1029/2012WR011857. -6. Or, D. (2023, 31. March). https://emeritus.step.ethz.ch/the-step-group.html +6. Or, D., Lehmann, P., Shahraeeni, E. and Shokri, N. (2013), Advances in Soil Evaporation Physics—A Review. Vadose Zone Journal, 12: 1-16 vzj2012.0163. https://doi.org/10.2136/vzj2012.0163 -</font> \ No newline at end of file +</font> diff --git a/slides/img/FFPM-SoilWaterEvapField.png b/slides/img/FFPM-SoilWaterEvapField.png index 3a33b912e05613f9e6c54fe0436103799b473127..724408ee95d2890edd38a9055db6cd9ff05e8ca1 100644 Binary files a/slides/img/FFPM-SoilWaterEvapField.png and b/slides/img/FFPM-SoilWaterEvapField.png differ