diff --git a/exercises/CMakeLists.txt b/exercises/CMakeLists.txt index 55370342d6b61fa363689ea63e83d70e14ce11f8..82031e6c316e1cec7f6f58a2021df810acb1f14f 100644 --- a/exercises/CMakeLists.txt +++ b/exercises/CMakeLists.txt @@ -2,6 +2,7 @@ add_custom_target(test_exercises) add_subdirectory(exercise-basic) +add_subdirectory(exercise-coupling-ff-pm) add_subdirectory(exercise-runtimeparams) add_subdirectory(exercise-grids) add_subdirectory(exercise-properties) diff --git a/exercises/exercise-coupling-ff-pm/1pspatialparams.hh b/exercises/exercise-coupling-ff-pm/1pspatialparams.hh new file mode 100644 index 0000000000000000000000000000000000000000..64887e33307e8a45908dabc131e919a99f95dfa1 --- /dev/null +++ b/exercises/exercise-coupling-ff-pm/1pspatialparams.hh @@ -0,0 +1,98 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 2 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ +/*! + * \file + * \ingroup OnePTests + * \brief The spatial parameters class for the test problem using the 1p cc model + */ +#ifndef DUMUX_1P_TEST_SPATIALPARAMS_HH +#define DUMUX_1P_TEST_SPATIALPARAMS_HH + +#include <dumux/material/spatialparams/fv1p.hh> + +namespace Dumux +{ + +/*! + * \ingroup OnePModel + * \ingroup ImplicitTestProblems + * + * \brief The spatial parameters class for the test problem using the + * 1p cc model + */ +template<class TypeTag> +class OnePSpatialParams +: public FVSpatialParamsOneP<typename GET_PROP_TYPE(TypeTag, FVGridGeometry), + typename GET_PROP_TYPE(TypeTag, Scalar), + OnePSpatialParams<TypeTag>> +{ + using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + using Problem = typename GET_PROP_TYPE(TypeTag, Problem); + using GridView = typename GET_PROP_TYPE(TypeTag, GridView); + using ParentType = FVSpatialParamsOneP<FVGridGeometry, Scalar, OnePSpatialParams<TypeTag>>; + + using Element = typename GridView::template Codim<0>::Entity; + using GlobalPosition = typename Element::Geometry::GlobalCoordinate; + +public: + // export permeability type + using PermeabilityType = Scalar; + + OnePSpatialParams(std::shared_ptr<const FVGridGeometry> fvGridGeometry) + : ParentType(fvGridGeometry) + { + permeability_ = getParam<Scalar>("Darcy.SpatialParams.Permeability"); + porosity_ = getParam<Scalar>("Darcy.SpatialParams.Porosity"); + alphaBJ_ = getParam<Scalar>("Darcy.SpatialParams.AlphaBeaversJoseph"); + } + + /*! + * \brief Function for defining the (intrinsic) permeability \f$[m^2]\f$. + * + * \param globalPos The global position + * \return the intrinsic permeability + */ + PermeabilityType permeabilityAtPos(const GlobalPosition& globalPos) const + { return permeability_; } + + /*! \brief Define the porosity in [-]. + * + * \param globalPos The global position + */ + Scalar porosityAtPos(const GlobalPosition& globalPos) const + { return porosity_; } + + /*! \brief Define the Beavers-Joseph coefficient in [-]. + * + * \param globalPos The global position + */ + Scalar beaversJosephCoeffAtPos(const GlobalPosition& globalPos) const + { return alphaBJ_; } + + +private: + Scalar permeability_; + Scalar porosity_; + Scalar alphaBJ_; +}; + +} // end namespace + +#endif diff --git a/exercises/exercise-coupling-ff-pm/2pspatialparams.hh b/exercises/exercise-coupling-ff-pm/2pspatialparams.hh new file mode 100644 index 0000000000000000000000000000000000000000..1830f3cbf2381280ca1213b8a07a17890846203c --- /dev/null +++ b/exercises/exercise-coupling-ff-pm/2pspatialparams.hh @@ -0,0 +1,139 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 2 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ +/*! + * \file + * \ingroup TwoPTests + * \brief The spatial parameters class for the test problem using the 2p cc model + */ +#ifndef DUMUX_TWOPHASE_SPATIAL_PARAMS_HH +#define DUMUX_TWOPHASE_SPATIAL_PARAMS_HH + +#include <dumux/material/spatialparams/fv.hh> +#include <dumux/material/fluidmatrixinteractions/2p/efftoabslaw.hh> +#include <dumux/material/fluidmatrixinteractions/2p/regularizedvangenuchten.hh> +#include <dumux/material/fluidmatrixinteractions/2p/thermalconductivitysomerton.hh> + +namespace Dumux +{ + +/*! + * \ingroup TwoPModel + * \ingroup ImplicitTestProblems + * + * \brief The spatial parameters class for the test problem using the 2p cc model + */ +template<class TypeTag> +class TwoPSpatialParams +: public FVSpatialParams<typename GET_PROP_TYPE(TypeTag, FVGridGeometry), + typename GET_PROP_TYPE(TypeTag, Scalar), + TwoPSpatialParams<TypeTag>> +{ + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + using Problem = typename GET_PROP_TYPE(TypeTag, Problem); + using GridView = typename GET_PROP_TYPE(TypeTag, GridView); + using Element = typename GridView::template Codim<0>::Entity; + using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); + using FVElementGeometry = typename FVGridGeometry::LocalView; + using SubControlVolume = typename FVElementGeometry::SubControlVolume; + using ParentType = FVSpatialParams<FVGridGeometry, Scalar, TwoPSpatialParams<TypeTag>>; + + using GlobalPosition = typename Element::Geometry::GlobalCoordinate; + using EffectiveLaw = RegularizedVanGenuchten<Scalar>; + +public: + using MaterialLaw = EffToAbsLaw<EffectiveLaw>; + using MaterialLawParams = typename MaterialLaw::Params; + using PermeabilityType = Scalar; + + TwoPSpatialParams(std::shared_ptr<const FVGridGeometry> fvGridGeometry) + : ParentType(fvGridGeometry) + { + permeability_ = getParam<Scalar>("Darcy.SpatialParams.Permeability"); + porosity_ = getParam<Scalar>("Darcy.SpatialParams.Porosity"); + alphaBJ_ = getParam<Scalar>("Darcy.SpatialParams.AlphaBeaversJoseph"); + + // residual saturations + params_.setSwr(getParam<Scalar>("Darcy.SpatialParams.Swr")); + params_.setSnr(getParam<Scalar>("Darcy.SpatialParams.Snr")); + // parameters for the vanGenuchten law + params_.setVgAlpha(getParam<Scalar>("Darcy.SpatialParams.VgAlpha")); + params_.setVgn(getParam<Scalar>("Darcy.SpatialParams.VgN")); + params_.setPcLowSw(params_.swr()*5.0); + params_.setPcHighSw(1.0-params_.snr()*5.0); + } + + /*! + * \brief Function for defining the (intrinsic) permeability \f$[m^2]\f$. + * + * \param globalPos The global position + * \return the intrinsic permeability + */ + PermeabilityType permeabilityAtPos(const GlobalPosition& globalPos) const + { return permeability_; } + + /*! \brief Define the porosity in [-]. + * + * \param globalPos The global position + */ + Scalar porosityAtPos(const GlobalPosition& globalPos) const + { return porosity_; } + + /*! \brief Define the Beavers-Joseph coefficient in [-]. + * + * \param globalPos The global position + */ + Scalar beaversJosephCoeffAtPos(const GlobalPosition& globalPos) const + { return alphaBJ_; } + + /*! + * \brief Returns the parameter object for the Brooks-Corey material law. + * In this test, we use element-wise distributed material parameters. + * + * \param element The current element + * \param scv The sub-control volume inside the element. + * \param elemSol The solution at the dofs connected to the element. + * \return the material parameters object + */ + template<class ElementSolutionVector> + const MaterialLawParams& materialLawParams(const Element& element, + const SubControlVolume& scv, + const ElementSolutionVector& elemSol) const + { return params_; } + + /*! + * \brief Function for defining which phase is to be considered as the wetting phase. + * + * \return the wetting phase index + * \param globalPos The global position + */ + template<class FluidSystem> + int wettingPhaseAtPos(const GlobalPosition& globalPos) const + { return FluidSystem::phase0Idx; } + +private: + Scalar permeability_; + Scalar porosity_; + Scalar alphaBJ_; + MaterialLawParams params_; + static constexpr Scalar eps_ = 1.0e-7; +}; + +} // end namespace + +#endif diff --git a/exercises/exercise-coupling-ff-pm/CMakeLists.txt b/exercises/exercise-coupling-ff-pm/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..bae4c263a6bf7ae6a06d90af66a2e45d224f9b2e --- /dev/null +++ b/exercises/exercise-coupling-ff-pm/CMakeLists.txt @@ -0,0 +1,3 @@ +add_subdirectory(interface) +add_subdirectory(models) +add_subdirectory(turbulence) diff --git a/exercises/exercise-coupling-ff-pm/README.md b/exercises/exercise-coupling-ff-pm/README.md new file mode 100644 index 0000000000000000000000000000000000000000..6b0b300811c751b29fd28c65d916f334dac1a66b --- /dev/null +++ b/exercises/exercise-coupling-ff-pm/README.md @@ -0,0 +1,388 @@ +# Exercise Coupling free flow/porous medium flow + +The aim of this exercise is to get familiar with setting up coupled free flow/porous medium flow problems. + +## Problem set-up + +The model domain consists of two non-overlapping subdomains. +Free flow is modeled in the upper subdomain, while the lower subdomain models a flow in a porous medium. Both single-phase flow and two-phase flow will be considered in the porous domain. + + +### 0. Getting familiar with the code + +* Navigate to the directory `exercises/exercise-coupling-ff-pm` + +There are three sub folders: `interface`, `models` and `turbulence`. + +The problem-related files for this exercise are: +* Three __main files__ for the three sub-tasks :`ex_interface_coupling_ff-pm.cc`, `ex_models_coupling_ff-pm.cc`, `ex_turbulence_coupling_ff-pm.cc`, +* Three __free flow problem files__: `ex_interface_ffproblem.hh`, `ex_models_ffproblem.hh`, `ex_turbulence__ffproblem.hh` +* Three __porous medium flow problem files__: `ex_interface_pmproblem.hh`, `ex_models_pmproblem.hh`, `ex_turbulence_pmproblem.hh` +* The __input files__: `ex_interface_coupling_ff-pm.input`, `ex_models_coupling_ff-pm.input`, `ex_turbulence_coupling_ff-pm.input`, +* The __spatial parameters files__: `1pspatialparams.hh`, `2pspatialparams.hh` + + +In the main file, `TypeTags` for both submodels are defined. +The same applies for types such as `GridManager`, `FVGridGeometry`, `Problem`, etc... +Since we use a monolithic coupling scheme, there is only one `Assembler` and one `NewtonSolver`. + +The problem files very much look like "regular", uncoupled ones with the exception that they hold a pointer to the `CouplingManager` which allows to evaluate the coupling conditions and to exchange information between the coupled models. +The coupling conditions are realized technically in terms of boundary condition. For instance, in lines 171 and 172 +in `ex_interface_ffproblem.hh`, `couplingNeumann` boundary conditions are set, which means that the free flow models evaluates the +mass and momentum fluxes coming from the porous domain and uses these values as boundary conditions at the interface. + +Note the certain checks are performed when combining different models, e.g., the fluid system has to be the same for both domains +and the sub-control-volume faces at the interface have to match. + + +We will use a staggered grid for the free flow and a cell-centered finite volume method for the porous medium. +Keep in mind that the staggered grid implementation distinguishes between face variables (velocity components) and +cell center variables (all other variables), therefore in some cases either the `stokesCellCenterIdx` +or the `stokesFaceIdx` is used respectively, while for the porous medium all variables can be accessed with `darcyIdx`. + +__Task__: +Take a closer look at the Stokes/Darcy coupling files before moving to the next part of the exercise: + + +### 1. Changing the interface + +In this part of the exercise, a simple coupled system consisting of a one-phase (1p) free flow and a one-phase flow in a porous medium is set up. Both subproblems have no-flow boundaries at the sides. +Currently, a velocity profile is set on the upper free flow boundary, which leads to a vertical flow into the porous medium: + + + +* We will first change the flow direction such that the free flow is parallel to the porous medium. +* Afterwards, the Beavers-Joseph-Saffman condition will be used as an interface condition for the tangential momentum transfer. +* Last, we change the flat interface between the two domains to a wave-shaped one. + +__Task A: Change the flow direction__ + +Open the file `ex_interface_ffproblem.hh` and navigate to line 148, where the types of boundary condition are set. +Instead of applying a fixed velocity profile at the top of the domain, we want to use fixed pressure boundary conditions +at the left and right side of the free flow domain, while the top represents an impermeable wall. + +Set a Dirichlet boundary condition for the pressure at the left and right side of the domain: +``` cpp +if(onLeftBoundary_(globalPos) || onRightBoundary_(globalPos)) + values.setDirichlet(Indices::pressureIdx); + +``` + +Set a Dirichlet boundary condition for the velocities at the top: +``` cpp +if(onUpperBoundary_(globalPos)) +{ + values.setDirichlet(Indices::velocityXIdx); + values.setDirichlet(Indices::velocityYIdx); +} +``` + +Keep the coupling boundary condition: +``` cpp +if(couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf)) +{ + values.setCouplingNeumann(Indices::conti0EqIdx); + values.setCouplingNeumann(Indices::momentumYBalanceIdx); +} +``` + +Having changed the types of boundary conditions, we must now assign the correct values for them. + +Set a no-slip, no-flow condition for the velocity at the top: +``` cpp +values[Indices::velocityXIdx] = 0.0; +values[Indices::velocityYIdx] = 0.0; +``` +Apply a fixed pressure difference between the inlet and outlet, e.g.: +``` cpp +if(onLeftBoundary_(globalPos)) + values[Indices::pressureIdx] = deltaP_; +if(onRightBoundary_(globalPos)) + values[Indices::pressureIdx] = 0.0; +``` + +For changing the flow direction, the boundary conditions for the porous medium have to be changed as well. + +Use Neumann no-flow boundaries everywhere, keep the coupling conditions. +``` cpp +values.setAllNeumann(); + +if (couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf)) + values.setAllCouplingNeumann(); +``` + +This should make the flow go from left to right. + +__Task B: Include slip-condition__ + +However, we are still missing one important feature: +at the moment, the velocity component tangential to the interface gets a no-slip condition. +In the next step we want to implement the Beavers-Joseph-Saffman slip condition at the interface: + +$`\frac{\partial v_x}{\partial y} = \frac{\alpha}{\sqrt K} (v_x - q_{pm})\quad`$ at $`\quad y=0`$ + +with $`\quad q_{pm}=0`$. + +To include this, just set a Beavers-Joseph-Saffman (BJS) boundary condition for the respective momentum balance: +``` cpp +values.setBJS(Indices::momentumXBalanceIdx); +``` + +at the position where the coupling boundary conditions are set in `ex_interface_ffproblem.hh`. + +To check if the simulation behaves as expected, we can compare the velocity profile $`v_x(y)`$ with the analytical solution provided by [Beavers and Joseph (1967)](https://doi.org/10.1017/S0022112067001375). +For doing so, we uncomment line 212 in `ex_interface_coupling_ff-pm.cc`. +```cpp +stokesVtkWriter.addField(stokesProblem->getAnalyticalVelocityX(), "analyticalV_x"); +``` + +After re-compiling and re-running the executable, we should be able to see also +the analytical solution of $`v_x`$ on the free flow domain. Play around with the grid resolution to see how that affects the velocity profile. + +__Task C: Cange shape of interface__ + +Now we want to include a non-flat interface between the two domains. We use `dune-subgrid` to construct +two grids for the two domains from one common host grid. Comment out lines 93-103 in `ex_interface_coupling_ff-pm.cc` and comment lines 112-147 in the same file. This will instantiate a host grid and define two helper lambda functions that are used to choose elements from to host grid for the respective sub grid. In the given case, +the domain is split in two haves, separated by a sinusoidal interface. + +```cpp +auto elementSelectorStokes = [&](const auto& element) +{ + double interface = params.amplitude * std::sin(( element.geometry().center()[0] -params.offset) / params.scaling * 2.0 * M_PI) + params.baseline; + return element.geometry().center()[1] > interface; +}; + +auto elementSelectorDarcy = [&](const auto& element) +{ + double interface = params.amplitude * std::sin(( element.geometry().center()[0] - params.offset) / params.scaling * 2.0 * M_PI) + params.baseline; + return element.geometry().center()[1] < interface; +}; +``` + +Make sure, that you have uncommented the lines including the gridcreators in both problem files +```cpp +#include <dumux/io/grid/subgridgridcreator.hh> +``` + +and do the changes in the respective lines for the `Grid` property. + +The problem should now compile and run. However, an error occurs due to the coupling conditions. +So far, we assumed a flat interface, therefore the normal momentum coupling condition + + $`[\sigma \cdot \mathbf{n}]^{FF} = p^{PM}`$ + + was always set for a fixed $`\mathbf{n} = (0,1)^T`$. We need to account for the curvature of the interface and thus replace + ```cpp +values.setCouplingNeumann(Indices::momentumYBalanceIdx); + ``` + with + ```cpp +values.setCouplingNeumann(scvf.directionIndex()); + ``` +The same if true for the BJS condition, however, here we need to consider the tangential direction: +```cpp +values.setCouplingNeumann(1 - scvf.directionIndex()); +``` + +The final result should look something like this: + + + + +### 2. Changing the porous medium model + +In this part of the exercise, the coupled system will be extended such that the transport of components +in both parts is included and the presence of a second phase in the porous medium is considered. +This enables the simulation of the drying of a porous medium (however no energy balance is included yet). + +We start with an example in which the transport of water vapor in the gas phase is considered. +The porous medium is filled with gas, initially the mole fraction of water vapor is $`x^w_g = 0.1`$. +Above the porous medium, a dry gas flows and by diffusion, the porous medium dries out. + + +__Task A: Change the model__: + +In the first task, the porous-medium model will be changed from a 1p2c system to a 2p2c system. +Although a 2p2c system is plugged in, we still want to simulate the same situation as before, i.e., air with water vapor in both domains. +The following changes have to be made in the porous-medium model (`ex_models_pmproblem.hh`): +* Include the 2pnc model: include the respective headers and inherit from the new model `TwoPNC` +* Exchange the spatial parameters for the 1-phase system by those for a 2-phase system (hint: two occurrences). +* Since two phases are involved now, we do not need to use the OnePAdapter anymore. Change to property of the FluidSystem such that `H2OAir` is used directly. + Afterwards, set the `transportCompIdx` to `Indices::switchIdx`. + +One big difference between the 1p and 2p model is, that the primary variables for which +the problem is solved, are not fixed. +It is possible to use different formulations, e.g. with the gas pressure and the +liquid saturation as primary variables (p_g-S_l -> `p1s0`) or vice versa. +* Set the property + +``` +SET_PROP(DarcyTypeTag, Formulation) +{ static constexpr auto value = TwoPFormulation::p1s0; }; +``` + in the Properties section in the problem file. + +In contrast to the formulation, which stays the same during one simulation, the meaning of +the primary variables may vary during one simulation. +In the case we are investigating, we want to use the gas pressure and the liquid saturation as primary variables. +However, if only the gas phase is present, the liquid saturation is always zero. +In this case, the chosen formulation will set the given value as the mole fraction of water vapor in the gas phase. +* To tell to program which phases are present in which parts of the domain at the beginning of the simulation, + you have to call `values.setState(MY_PHASE_PRESENCE);` in `initialAtPos()`. Have a look at the `indices.hh` + in the `2p2c` model to figure out which is the correct value of `MY_PHASE_PRESENCE` for the presence of + a gas-phase only (hint: the numbering of phase indices begins with 0, the numbering of the phase presence states begins + with 1. Take a look at your formulation to find out which phase index to use for the gas phase.) + +Compile and run the new simulation. +(Don't mind the compiler warning, we will deal with it in the next task.) + +__Task B: Add output__: + +In the next step, we want to add some output to the simulation. +First we want to know the water mass in the (porous-medium) system. +Therefore, we evaluate the storage term of the water component. +* Have a look at the function `evaluateWaterMassStorageTerm()` in the porous medium subproblem. + Then implement a calculation of the total water mass: + $`\sum_{\alpha \in \textrm{g,l}} \left( \phi S_\alpha X^\text{w}_\alpha \varrho_\alpha V_\textrm{scv} \right)`$. + Afterwards, adapt the method `init()` such that the variable `initialWaterContent_` is initialized correctly using the `evaluateWaterMassStorageTerm()` method and assign that value also to the variable `lastWaterMass_`. + +We also want to investigate the temporal evolution of the water mass. +The following steps need to be done to do so. +Check if all instructions are implemented accordingly: +* Calculate the initial water mass at the beginning of the simulation and add the water mass loss to the output. + Based on the water mass loss you can derive the evaporation rate. Because despite at the interface, all + boundaries have Neumann no-flow conditions and no sources are present, the water can only leave the system + via the porous-medium free-flow interface. The evaporation in [mm/d] can be calculated by: + $`e = \frac{\textrm{d}\, M^\text{w}}{\textrm{d}\, t} / A_\textrm{interface}`$. + +Finally we want to know the distribution of the water mass fluxes across the interface. +* Have a look at the function `evaluateInterfaceFluxes()` in the porous medium problem. + Use the facilities therein to return the values of ...massCouplingCondition... from the `couplingManager` + for each coupling scvf. Then the fluxes are visualized with gnuplot, when setting `Problem.PlotFluxes = true`. + If the simulation is too fast, you can have a look at the flux*.png files after the simulation. +* You can use the property `Problem.PlotStorage = true` to see the temporal evolution of the evaporation rate + and the cumulative water mass loss. + +Compile and run the simulation and take a look at the results. + +__Task C: Let it dry out__: + +In this exercise we want to completely dry an initial water-filled porous medium. +- Change the initial condition such that it is started with a two-phase system. + Set the initial saturation to $`S_\text{l} = 0.1`$. + +If one wants to simulate the complete drying of a porous medium, the standard capillary pressure--saturation +relationships have to be regularized. If no regularization is used, then the capillary pressure would +approach infinity when the liquid saturation goes to zero. This means that water can flow to the +interface from any region of the porous medium and of course this poses numerical problems. +Therefore, the capillary pressure--saturation relationship has to be regularized for low saturations. +The regularization has a strong influence on how long liquid water is present at the interface, see +[Mosthaf (2014)](http://dx.doi.org/10.18419/opus-519). +* Take a look at how the regularization is set in the `2pspatialparams.hh` and see how adapating + the parameter for `pcLowSw` and `pcHighSw` affects the results. + +The porous-medium model can now reach a liquid saturation of zero. As already explained above, +for this case the liquid saturation cannot serve as primary variable anymore. However, +manually adapting the primary variable states and values is inconvenient. +[Class et al. (2002)](http://dx.doi.org/10.1016/S0309-1708(02)00014-3) +describe an algorithm to switch the primary variables, if phases should appear or disappear during a simulation. +- Replace the current implementation of the Newton solver with the version which can handle + primary variable switches: `dumux/multidomain/privarswitchnewtonsolver.hh`. + You also have to uncomment the line containing the `PriVarSwitchTuple` and to overwrite + the last argument with the `PrimaryVariableSwitch` property from the Darcy model. + +Now you are able to simulate a complete drying of the porous medium. + + +### 4. Use a turbulence model in the free flow domain + +Several RANS turbulence models are implemented in DuMuX. +This part of the exercise consists of the following steps: +* replacing the Navier-Stokes model by the zero equation turbulence model, +* switching to a symmetry boundary condition, +* applying a grid refinement towards the interface, +* subsequently refining the grid (convergence study). + +We will work with a `1p2cni/2p2cni` coupled problem, where `ni` stands for non-isothermal, and take the inertial forces into account. +All the prepared files can be found in the subfolder `exercise-coupling-ff-pm/turbulence`. + +__Task A__: + +The file `ex_turbulence_ffproblem.hh` is your free flow problem file within this exercise. + +For using the compositional zero equation turbulence model, the following header files need to be included: +``` +#include <dumux/freeflow/compositional/zeroeqncmodel.hh> +#include <dumux/freeflow/rans/zeroeq/problem.hh> +``` +The includes for the NavierStokesNC model and the NavierStokesProblem are no longer needed and can be removed. + +Make sure your free flow problem inherits from the correct parent type: +* Change the last entry in the `NEW_TYPE_TAG` definition accordingly (non-isothermal zero equation model) +* Adapt the inheritance of the problem class (hint: two occurrences) + +Take a look into the two headers included above to see how the correct TypeTag and the Problem class the inherit from are called. + +Additionally, you have to update the static and dynamic wall properties with +```c++ +stokesProblem->updateStaticWallProperties(); +stokesProblem->updateDynamicWallProperties(stokesSol); +``` +after applying the initial solution to the Stokes problem in the main file. + +In order to update these properties, the Stokes problem file needs to be extended to provide an isOnWall() method: +```c++ +bool isOnWall(const GlobalPosition& globalPos) const +{ + return (onLowerBoundary_(globalPos) || onUpperBoundary_(globalPos)); +} +``` + +Since the dynamic wall properties can change during the simulation and depend on the solution, they have to be updated in each time step. +Include the following lines into your main file (after `// update dynamic wall properties`): +```c++ +stokesProblem->updateDynamicWallProperties(stokesSol); +``` + +Compile and run your new coupled problem and take a look at the results in Paraview. +In addition to the standard variables and parameters, you can now choose turbulence model specific quantities (e.g. the turbulent viscosity `nu_t`) for the free flow domain. +The result for the turbulent viscosity should look like this: + + + +__Task B__: + +Instead of computing the whole cross-section of a channel, you can use symmetric boundary conditions at the top boundary of your free flow domain by replacing all previous boundary conditions with +```c++ +values.setAllSymmetry(); +``` + +In addition, you have to remove the condition `onUpperBoundary_(globalPos)` from the `isOnWall(globalPos)` method. + +__Task C__: + +Choose `Surface With Edges` instead of `Surface` in the Paraview toolbar to see the discretization grid. +We will refine the grid now in order to better resolve the processes at the coupling interface. +Since not much is happening at the upper and lower boundaries of the whole domain, we want to keep the resolution low in these areas to save some computation time. + +A grid refinement towards the interface is called _grading_. +Try different gradings by changing the values in the respective sections in the input file: +```c++ +Grading0 = 1.0 +Grading1 = 1.0 +``` + +__Task D__: + +For the grid convergence study, run various simulations with the following grading parameters: +```c++ +* [Stokes.Grid] Grading1 = 1.2, [Darcy.Grid] Grading1 = -1.2 +* [Stokes.Grid] Grading1 = 1.3, [Darcy.Grid] Grading1 = -1.3 +* [Stokes.Grid] Grading1 = 1.4, [Darcy.Grid] Grading1 = -1.4 +* [Stokes.Grid] Grading1 = 1.5, [Darcy.Grid] Grading1 = -1.5 +* [Stokes.Grid] Grading1 = 1.6, [Darcy.Grid] Grading1 = -1.6 +``` + +By changing the parameter `Problem.Name` for each grading factor, you avoid loosing the `.vtu` and `.pvd` files of the previous simulation runs. +Check the first lines of the output to see how the grading factors change the height of your grid cells. +Compare the velocity fields with Paraview. diff --git a/exercises/exercise-coupling-ff-pm/interface/CMakeLists.txt b/exercises/exercise-coupling-ff-pm/interface/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..249f34aa90d7853fc35384d9953d4c0284939ca8 --- /dev/null +++ b/exercises/exercise-coupling-ff-pm/interface/CMakeLists.txt @@ -0,0 +1,9 @@ +add_input_file_links() + +# executables for ex_interface_coupling_ff-pm +dune_add_test(NAME ex_interface_coupling_ff-pm + SOURCES ex_interface_coupling_ff-pm.cc + CMD_ARGS ex_interface_coupling_ff-pm.input) + +# add tutorial to the common target +add_dependencies(test_exercises ex_interface_coupling_ff-pm) diff --git a/exercises/exercise-coupling-ff-pm/interface/ex_interface_coupling_ff-pm.cc b/exercises/exercise-coupling-ff-pm/interface/ex_interface_coupling_ff-pm.cc new file mode 100644 index 0000000000000000000000000000000000000000..85226b998887b5ea030ed889ae598573ce250da3 --- /dev/null +++ b/exercises/exercise-coupling-ff-pm/interface/ex_interface_coupling_ff-pm.cc @@ -0,0 +1,281 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 2 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ +/*! + * \file + * + * \brief A test problem for the coupled Stokes/Darcy problem (1p) + */ +#include <config.h> + +#include <iostream> + +#include <dune/common/parallel/mpihelper.hh> +#include <dune/istl/io.hh> + +#include <dumux/common/properties.hh> +#include <dumux/common/parameters.hh> +#include <dumux/common/dumuxmessage.hh> +#include <dumux/linear/seqsolverbackend.hh> +#include <dumux/assembly/fvassembler.hh> +#include <dumux/assembly/diffmethod.hh> +#include <dumux/discretization/methods.hh> +#include <dumux/io/vtkoutputmodule.hh> +#include <dumux/io/staggeredvtkoutputmodule.hh> +#include <dumux/io/grid/gridmanager.hh> + +#include <dumux/multidomain/staggeredtraits.hh> +#include <dumux/multidomain/fvassembler.hh> +#include <dumux/multidomain/newtonsolver.hh> + +#include <dumux/multidomain/boundary/stokesdarcy/couplingmanager.hh> + +#include "ex_interface_pmproblem.hh" +#include "ex_interface_ffproblem.hh" + +namespace Dumux { +namespace Properties { + +SET_PROP(StokesOnePTypeTag, CouplingManager) +{ + using Traits = StaggeredMultiDomainTraits<TypeTag, TypeTag, TTAG(DarcyOnePTypeTag)>; + using type = Dumux::StokesDarcyCouplingManager<Traits>; +}; + +SET_PROP(DarcyOnePTypeTag, CouplingManager) +{ + using Traits = StaggeredMultiDomainTraits<TTAG(StokesOnePTypeTag), TTAG(StokesOnePTypeTag), TypeTag>; + using type = Dumux::StokesDarcyCouplingManager<Traits>; +}; + +} // end namespace Properties +} // end namespace Dumux + +int main(int argc, char** argv) try +{ + using namespace Dumux; + + // initialize MPI, finalize is done automatically on exit + const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv); + + // print dumux start message + if (mpiHelper.rank() == 0) + DumuxMessage::print(/*firstCall=*/true); + + // parse command line arguments and input file + Parameters::init(argc, argv); + + // Define the sub problem type tags + using StokesTypeTag = TTAG(StokesOnePTypeTag); + using DarcyTypeTag = TTAG(DarcyOnePTypeTag); + + + + // ******************** comment-out this section for the last exercise **************** // + + // create two individual grids (from the given grid file or the input file) + // for both sub-domains + using DarcyGridManager = Dumux::GridManager<typename GET_PROP_TYPE(DarcyTypeTag, Grid)>; + DarcyGridManager darcyGridManager; + darcyGridManager.init("Darcy"); // pass parameter group + + using StokesGridManager = Dumux::GridManager<typename GET_PROP_TYPE(StokesTypeTag, Grid)>; + StokesGridManager stokesGridManager; + stokesGridManager.init("Stokes"); // pass parameter group + + // we compute on the leaf grid view + const auto& darcyGridView = darcyGridManager.grid().leafGridView(); + const auto& stokesGridView = stokesGridManager.grid().leafGridView(); + + // ************************************************************************************ // + + + // ******************** uncomment this section for the last exercise ****************** // + + // // use dune-subgrid to create the individual grids + // static constexpr int dim = 2; + // using HostGrid = Dune::YaspGrid<2, Dune::TensorProductCoordinates<double, dim> >; + // using HostGridManager = Dumux::GridManager<HostGrid>; + // HostGridManager hostGridManager; + // hostGridManager.init(); + // auto& hostGrid = hostGridManager.grid(); + // + // struct Params + // { + // double amplitude = getParam<double>("Grid.Amplitude"); + // double baseline = getParam<double>("Grid.Baseline"); + // double offset = getParam<double>("Grid.Offset"); + // double scaling = getParam<double>("Grid.Scaling"); + // }; + // + // Params params; + // + // auto elementSelectorStokes = [&](const auto& element) + // { + // double interface = params.amplitude * std::sin(( element.geometry().center()[0] -params.offset) / params.scaling * 2.0 * M_PI) + params.baseline; + // return element.geometry().center()[1] > interface; + // }; + // + // auto elementSelectorDarcy = [&](const auto& element) + // { + // double interface = params.amplitude * std::sin(( element.geometry().center()[0] - params.offset) / params.scaling * 2.0 * M_PI) + params.baseline; + // return element.geometry().center()[1] < interface; + // }; + // + // // subgrid Pointer + // auto stokesGridPtr = SubgridGridCreator<HostGrid>::makeGrid(hostGrid, elementSelectorStokes, "Stokes"); + // auto darcyGridPtr = SubgridGridCreator<HostGrid>::makeGrid(hostGrid, elementSelectorDarcy, "Darcy"); + // + // // we compute on the leaf grid view + // const auto& darcyGridView = darcyGridPtr->leafGridView(); + // const auto& stokesGridView = stokesGridPtr->leafGridView(); + + // ************************************************************************************ // + + + // create the finite volume grid geometry + using StokesFVGridGeometry = typename GET_PROP_TYPE(StokesTypeTag, FVGridGeometry); + auto stokesFvGridGeometry = std::make_shared<StokesFVGridGeometry>(stokesGridView); + stokesFvGridGeometry->update(); + using DarcyFVGridGeometry = typename GET_PROP_TYPE(DarcyTypeTag, FVGridGeometry); + auto darcyFvGridGeometry = std::make_shared<DarcyFVGridGeometry>(darcyGridView); + darcyFvGridGeometry->update(); + + using Traits = StaggeredMultiDomainTraits<StokesTypeTag, StokesTypeTag, DarcyTypeTag>; + + // the coupling manager + using CouplingManager = StokesDarcyCouplingManager<Traits>; + auto couplingManager = std::make_shared<CouplingManager>(stokesFvGridGeometry, darcyFvGridGeometry); + + // the indices + constexpr auto stokesCellCenterIdx = CouplingManager::stokesCellCenterIdx; + constexpr auto stokesFaceIdx = CouplingManager::stokesFaceIdx; + constexpr auto darcyIdx = CouplingManager::darcyIdx; + + // the problem (initial and boundary conditions) + using StokesProblem = typename GET_PROP_TYPE(StokesTypeTag, Problem); + auto stokesProblem = std::make_shared<StokesProblem>(stokesFvGridGeometry, couplingManager); + using DarcyProblem = typename GET_PROP_TYPE(DarcyTypeTag, Problem); + auto darcyProblem = std::make_shared<DarcyProblem>(darcyFvGridGeometry, couplingManager); + + // the solution vector + Traits::SolutionVector sol; + sol[stokesCellCenterIdx].resize(stokesFvGridGeometry->numCellCenterDofs()); + sol[stokesFaceIdx].resize(stokesFvGridGeometry->numFaceDofs()); + sol[darcyIdx].resize(darcyFvGridGeometry->numDofs()); + + const auto& cellCenterSol = sol[stokesCellCenterIdx]; + const auto& faceSol = sol[stokesFaceIdx]; + + // apply initial solution for instationary problems + typename GET_PROP_TYPE(StokesTypeTag, SolutionVector) stokesSol; + std::get<0>(stokesSol) = cellCenterSol; + std::get<1>(stokesSol) = faceSol; + stokesProblem->applyInitialSolution(stokesSol); + sol[stokesCellCenterIdx] = stokesSol[stokesCellCenterIdx]; + sol[stokesFaceIdx] = stokesSol[stokesFaceIdx]; + + couplingManager->init(stokesProblem, darcyProblem, sol); + + // the grid variables + using StokesGridVariables = typename GET_PROP_TYPE(StokesTypeTag, GridVariables); + auto stokesGridVariables = std::make_shared<StokesGridVariables>(stokesProblem, stokesFvGridGeometry); + stokesGridVariables->init(stokesSol); + using DarcyGridVariables = typename GET_PROP_TYPE(DarcyTypeTag, GridVariables); + auto darcyGridVariables = std::make_shared<DarcyGridVariables>(darcyProblem, darcyFvGridGeometry); + darcyGridVariables->init(sol[darcyIdx]); + + // intialize the vtk output module + const auto stokesName = getParam<std::string>("Problem.Name") + "_" + stokesProblem->name(); + const auto darcyName = getParam<std::string>("Problem.Name") + "_" + darcyProblem->name(); + + StaggeredVtkOutputModule<StokesTypeTag> stokesVtkWriter(*stokesProblem, *stokesFvGridGeometry, *stokesGridVariables, stokesSol, stokesName); + GET_PROP_TYPE(StokesTypeTag, VtkOutputFields)::init(stokesVtkWriter); + + //****** uncomment the add analytical solution of v_x *****// + // stokesVtkWriter.addField(stokesProblem->getAnalyticalVelocityX(), "analyticalV_x"); + + stokesVtkWriter.write(0.0); + + VtkOutputModule<DarcyTypeTag> darcyVtkWriter(*darcyProblem, *darcyFvGridGeometry, *darcyGridVariables, sol[darcyIdx], darcyName); + GET_PROP_TYPE(DarcyTypeTag, VtkOutputFields)::init(darcyVtkWriter); + darcyVtkWriter.write(0.0); + + // the assembler for a stationary problem + using Assembler = MultiDomainFVAssembler<Traits, CouplingManager, DiffMethod::numeric>; + auto assembler = std::make_shared<Assembler>(std::make_tuple(stokesProblem, stokesProblem, darcyProblem), + std::make_tuple(stokesFvGridGeometry->cellCenterFVGridGeometryPtr(), + stokesFvGridGeometry->faceFVGridGeometryPtr(), + darcyFvGridGeometry), + std::make_tuple(stokesGridVariables->cellCenterGridVariablesPtr(), + stokesGridVariables->faceGridVariablesPtr(), + darcyGridVariables), + couplingManager); + + // the linear solver + using LinearSolver = UMFPackBackend; + auto linearSolver = std::make_shared<LinearSolver>(); + + // the non-linear solver + using NewtonSolver = MultiDomainNewtonSolver<Assembler, LinearSolver, CouplingManager>; + NewtonSolver nonLinearSolver(assembler, linearSolver, couplingManager); + + // solve the non-linear system + nonLinearSolver.solve(sol); + + // write vtk output + stokesVtkWriter.write(1.0); + darcyVtkWriter.write(1.0); + + //////////////////////////////////////////////////////////// + // finalize, print dumux message to say goodbye + //////////////////////////////////////////////////////////// + + // print dumux end message + if (mpiHelper.rank() == 0) + { + Parameters::print(); + DumuxMessage::print(/*firstCall=*/false); + } + + return 0; +} // end main +catch (Dumux::ParameterException &e) +{ + std::cerr << std::endl << e << " ---> Abort!" << std::endl; + return 1; +} +catch (Dune::DGFException & e) +{ + std::cerr << "DGF exception thrown (" << e << + "). Most likely, the DGF file name is wrong " + "or the DGF file is corrupted, " + "e.g. missing hash at end of file or wrong number (dimensions) of entries." + << " ---> Abort!" << std::endl; + return 2; +} +catch (Dune::Exception &e) +{ + std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl; + return 3; +} +catch (...) +{ + std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl; + return 4; +} diff --git a/exercises/exercise-coupling-ff-pm/interface/ex_interface_coupling_ff-pm.input b/exercises/exercise-coupling-ff-pm/interface/ex_interface_coupling_ff-pm.input new file mode 100644 index 0000000000000000000000000000000000000000..e3813950725ba4837e96b79d76dc9ccc74dc0d4f --- /dev/null +++ b/exercises/exercise-coupling-ff-pm/interface/ex_interface_coupling_ff-pm.input @@ -0,0 +1,45 @@ + # for dune-subgrid + [Grid] +Positions0 = 0 1 +Positions1 = 0 0.2 0.3 0.65 +Cells0 = 100 +Cells1 = 10 50 18 +Baseline = 0.25 # [m] +Amplitude = 0.04 # [m] +Offset = 0.5 # [m] +Scaling = 0.2 #[m] + +[Stokes.Grid] +Verbosity = true +Positions0 = 0.0 1.0 +Positions1 = 1.0 2.0 +Cells0 = 20 +Cells1 = 100 +Grading1 = 1 + +[Darcy.Grid] +Verbosity = true +Positions0 = 0.0 1.0 +Positions1 = 0.0 1.0 +Cells0 = 20 +Cells1 = 20 +Grading1 = 1 + +[Stokes.Problem] +Name = stokes +PressureDifference = 1e-9 + +[Darcy.Problem] +Name = darcy + +[Darcy.SpatialParams] +Permeability = 1e-6 # m^2 +Porosity = 0.4 +AlphaBeaversJoseph = 1.0 + +[Problem] +Name = ex_ff-pm-interface +EnableGravity = false + +[Vtk] +AddVelocity = 1 diff --git a/exercises/exercise-coupling-ff-pm/interface/ex_interface_ffproblem.hh b/exercises/exercise-coupling-ff-pm/interface/ex_interface_ffproblem.hh new file mode 100644 index 0000000000000000000000000000000000000000..48d29d667983db35a315d3417554f0c1880784db --- /dev/null +++ b/exercises/exercise-coupling-ff-pm/interface/ex_interface_ffproblem.hh @@ -0,0 +1,323 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 2 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ +/*! + * \file + * \brief The free flow sub problem + */ +#ifndef DUMUX_STOKES_SUBPROBLEM_HH +#define DUMUX_STOKES_SUBPROBLEM_HH + +#include <dune/grid/yaspgrid.hh> + +//****** uncomment for the last exercise *****// +// #include <dumux/io/grid/subgridgridcreator.hh> + +#include <dumux/material/fluidsystems/1pliquid.hh> +#include <dumux/material/components/simpleh2o.hh> + +#include <dumux/freeflow/navierstokes/problem.hh> +#include <dumux/discretization/staggered/freeflow/properties.hh> +#include <dumux/freeflow/navierstokes/model.hh> + +namespace Dumux +{ +template <class TypeTag> +class StokesSubProblem; + +namespace Properties +{ +NEW_TYPE_TAG(StokesOnePTypeTag, INHERITS_FROM(StaggeredFreeFlowModel, NavierStokes)); + +// the fluid system +SET_PROP(StokesOnePTypeTag, FluidSystem) +{ + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + using type = FluidSystems::OnePLiquid<Scalar, Dumux::Components::SimpleH2O<Scalar> > ; +}; + +// Set the grid type +SET_PROP(StokesOnePTypeTag, Grid) +{ + static constexpr auto dim = 2; + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + using TensorGrid = Dune::YaspGrid<2, Dune::TensorProductCoordinates<Scalar, dim> >; + +//****** comment out for the last exercise *****// + using type = TensorGrid; + +//****** uncomment for the last exercise *****// + // using HostGrid = TensorGrid; + // using type = Dune::SubGrid<dim, HostGrid>; +}; + +// Set the problem property +SET_TYPE_PROP(StokesOnePTypeTag, Problem, Dumux::StokesSubProblem<TypeTag> ); + +SET_BOOL_PROP(StokesOnePTypeTag, EnableFVGridGeometryCache, true); +SET_BOOL_PROP(StokesOnePTypeTag, EnableGridFluxVariablesCache, true); +SET_BOOL_PROP(StokesOnePTypeTag, EnableGridVolumeVariablesCache, true); + +SET_BOOL_PROP(StokesOnePTypeTag, EnableInertiaTerms, false); +} + +/*! + * \brief The free flow sub problem + */ +template <class TypeTag> +class StokesSubProblem : public NavierStokesProblem<TypeTag> +{ + using ParentType = NavierStokesProblem<TypeTag>; + + using GridView = typename GET_PROP_TYPE(TypeTag, GridView); + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + + using Indices = typename GET_PROP_TYPE(TypeTag, ModelTraits)::Indices; + + using BoundaryTypes = typename GET_PROP_TYPE(TypeTag, BoundaryTypes); + + using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); + using FVElementGeometry = typename FVGridGeometry::LocalView; + using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace; + using Element = typename GridView::template Codim<0>::Entity; + + using GlobalPosition = typename Element::Geometry::GlobalCoordinate; + + using PrimaryVariables = typename GET_PROP_TYPE(TypeTag, PrimaryVariables); + using NumEqVector = typename GET_PROP_TYPE(TypeTag, NumEqVector); + using FluidSystem = typename GET_PROP_TYPE(TypeTag, FluidSystem); + + using CouplingManager = typename GET_PROP_TYPE(TypeTag, CouplingManager); + +public: + StokesSubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry, std::shared_ptr<CouplingManager> couplingManager) + : ParentType(fvGridGeometry, "Stokes"), eps_(1e-6), couplingManager_(couplingManager) + { + deltaP_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.PressureDifference"); + } + + /*! + * \name Problem parameters + */ + // \{ + + /*! + * \brief Return the temperature within the domain in [K]. + * + * This problem assumes a temperature of 10 degrees Celsius. + */ + Scalar temperature() const + { return 273.15 + 10; } // 10°C + + /*! + * \brief Return the sources within the domain. + * + * \param globalPos The global position + */ + NumEqVector sourceAtPos(const GlobalPosition &globalPos) const + { return NumEqVector(0.0); } + // \} + + /*! + * \name Boundary conditions + */ + // \{ + + /*! + * \brief Specifies which kind of boundary condition should be + * used for which equation on a given boundary segment. + * + * \param element The finite element + * \param scvf The sub control volume face + */ + BoundaryTypes boundaryTypes(const Element& element, + const SubControlVolumeFace& scvf) const + { + BoundaryTypes values; + + const auto& globalPos = scvf.dofPosition(); + + if(onUpperBoundary_(globalPos)) + { + values.setDirichlet(Indices::velocityXIdx); + values.setDirichlet(Indices::velocityYIdx); + } + + // left/right wall + if (onRightBoundary_(globalPos) || (onLeftBoundary_(globalPos))) + { + values.setDirichlet(Indices::velocityXIdx); + values.setDirichlet(Indices::velocityYIdx); + } + + // coupling interface + if(couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf)) + { + values.setCouplingNeumann(Indices::conti0EqIdx); + values.setCouplingNeumann(Indices::momentumYBalanceIdx); + } + + return values; + } + + /*! + * \brief Evaluate the boundary conditions for a Dirichlet control volume. + * + * \param globalPos The global position + */ + PrimaryVariables dirichletAtPos(const GlobalPosition& globalPos) const + { + PrimaryVariables values(0.0); + values = initialAtPos(globalPos); + + return values; + } + + /*! + * \brief Evaluate the boundary conditions for a Neumann control volume. + * + * \param element The element for which the Neumann boundary condition is set + * \param fvGeomentry The fvGeometry + * \param elemVolVars The element volume variables + * \param elemFaceVars The element face variables + * \param scvf The boundary sub control volume face + */ + template<class ElementVolumeVariables, class ElementFaceVariables> + NumEqVector neumann(const Element& element, + const FVElementGeometry& fvGeometry, + const ElementVolumeVariables& elemVolVars, + const ElementFaceVariables& elemFaceVars, + const SubControlVolumeFace& scvf) const + { + NumEqVector values(0.0); + + if(couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf)) + { + values[Indices::conti0EqIdx] = couplingManager().couplingData().massCouplingCondition(fvGeometry, elemVolVars, elemFaceVars, scvf); + values[Indices::momentumYBalanceIdx] = couplingManager().couplingData().momentumCouplingCondition(fvGeometry, elemVolVars, elemFaceVars, scvf); + } + + return values; + } + + // \} + + //! Set the coupling manager + void setCouplingManager(std::shared_ptr<CouplingManager> cm) + { couplingManager_ = cm; } + + //! Get the coupling manager + const CouplingManager& couplingManager() const + { return *couplingManager_; } + + /*! + * \name Volume terms + */ + // \{ + + /*! + * \brief Evaluate the initial value for a control volume. + * + * \param globalPos The global position + */ + PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const + { + PrimaryVariables values(0.0); + values[Indices::velocityYIdx] = -1e-6 * globalPos[0] * (this->fvGridGeometry().bBoxMax()[0] - globalPos[0]); + + return values; + } + + /*! + * \brief Returns the intrinsic permeability of required as input parameter for the Beavers-Joseph-Saffman boundary condition + */ + Scalar permeability(const SubControlVolumeFace& scvf) const + { + return couplingManager().couplingData().darcyPermeability(scvf); + } + + /*! + * \brief Returns the alpha value required as input parameter for the Beavers-Joseph-Saffman boundary condition + */ + Scalar alphaBJ(const SubControlVolumeFace& scvf) const + { + return couplingManager().problem(CouplingManager::darcyIdx).spatialParams().beaversJosephCoeffAtPos(scvf.center()); + } + + /*! + * \brief calculate the analytical velocity in x direction based on Beavers & Joseph (1967) + */ + void calculateAnalyticalVelocityX() const + { + analyticalVelocityX_.resize(this->fvGridGeometry().gridView().size(0)); + + using std::sqrt; + const Scalar dPdX = -deltaP_ / (this->fvGridGeometry().bBoxMax()[0] - this->fvGridGeometry().bBoxMin()[0]); + static const Scalar mu = FluidSystem::viscosity(temperature(), 1e5); + static const Scalar alpha = getParam<Scalar>("Darcy.SpatialParams.AlphaBeaversJoseph"); + static const Scalar K = getParam<Scalar>("Darcy.SpatialParams.Permeability"); + static const Scalar sqrtK = sqrt(K); + const Scalar sigma = (this->fvGridGeometry().bBoxMax()[1] - this->fvGridGeometry().bBoxMin()[1])/sqrtK; + + const Scalar uB = -K/(2.0*mu) * ((sigma*sigma + 2.0*alpha*sigma) / (1.0 + alpha*sigma)) * dPdX; + + for (const auto& element : elements(this->fvGridGeometry().gridView())) + { + const auto eIdx = this->fvGridGeometry().gridView().indexSet().index(element); + const Scalar y = element.geometry().center()[1] - this->fvGridGeometry().bBoxMin()[1]; + + const Scalar u = uB*(1.0 + alpha/sqrtK*y) + 1.0/(2.0*mu) * (y*y + 2*alpha*y*sqrtK) * dPdX; + analyticalVelocityX_[eIdx] = u; + } + } + + /*! + * \brief Get the analytical velocity in x direction + */ + const std::vector<Scalar>& getAnalyticalVelocityX() const + { + if(analyticalVelocityX_.empty()) + calculateAnalyticalVelocityX(); + return analyticalVelocityX_; + } + + // \} + +private: + bool onLeftBoundary_(const GlobalPosition &globalPos) const + { return globalPos[0] < this->fvGridGeometry().bBoxMin()[0] + eps_; } + + bool onRightBoundary_(const GlobalPosition &globalPos) const + { return globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_; } + + bool onLowerBoundary_(const GlobalPosition &globalPos) const + { return globalPos[1] < this->fvGridGeometry().bBoxMin()[1] + eps_; } + + bool onUpperBoundary_(const GlobalPosition &globalPos) const + { return globalPos[1] > this->fvGridGeometry().bBoxMax()[1] - eps_; } + + Scalar eps_; + Scalar deltaP_; + + std::shared_ptr<CouplingManager> couplingManager_; + + mutable std::vector<Scalar> analyticalVelocityX_; +}; +} //end namespace + +#endif // DUMUX_STOKES_SUBPROBLEM_HH diff --git a/exercises/exercise-coupling-ff-pm/interface/ex_interface_pmproblem.hh b/exercises/exercise-coupling-ff-pm/interface/ex_interface_pmproblem.hh new file mode 100644 index 0000000000000000000000000000000000000000..7dd08bc3d41b34bbe7609a386d1bce637a24a5fc --- /dev/null +++ b/exercises/exercise-coupling-ff-pm/interface/ex_interface_pmproblem.hh @@ -0,0 +1,251 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 2 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ +/*! +* \file +* +* \brief The porous medium flow sub problem +*/ +#ifndef DUMUX_DARCY_SUBPROBLEM_HH +#define DUMUX_DARCY_SUBPROBLEM_HH + +#include <dune/grid/yaspgrid.hh> + +//****** uncomment for the last exercise *****// +// #include <dumux/io/grid/subgridgridcreator.hh> + +#include <dumux/discretization/cellcentered/tpfa/properties.hh> + +#include <dumux/porousmediumflow/1p/model.hh> +#include <dumux/porousmediumflow/problem.hh> + +#include "../1pspatialparams.hh" + +#include <dumux/material/components/simpleh2o.hh> +#include <dumux/material/fluidsystems/1pliquid.hh> + +namespace Dumux +{ +template <class TypeTag> +class DarcySubProblem; + +namespace Properties +{ +NEW_TYPE_TAG(DarcyOnePTypeTag, INHERITS_FROM(CCTpfaModel, OneP)); + +// Set the problem property +SET_TYPE_PROP(DarcyOnePTypeTag, Problem, Dumux::DarcySubProblem<TypeTag>); + +// the fluid system +SET_PROP(DarcyOnePTypeTag, FluidSystem) +{ + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + using type = FluidSystems::OnePLiquid<Scalar, Dumux::Components::SimpleH2O<Scalar> > ; +}; + +// Set the grid type +SET_PROP(DarcyOnePTypeTag, Grid) +{ + static constexpr auto dim = 2; + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + using TensorGrid = Dune::YaspGrid<2, Dune::TensorProductCoordinates<Scalar, dim> >; + +//****** comment out for the last exercise *****// + using type = TensorGrid; + +//****** uncomment for the last exercise *****// + // using HostGrid = TensorGrid; + // using type = Dune::SubGrid<dim, HostGrid>; +}; + +SET_TYPE_PROP(DarcyOnePTypeTag, SpatialParams, OnePSpatialParams<TypeTag>); +} + +/*! + * \brief The porous medium flow sub problem + */ +template <class TypeTag> +class DarcySubProblem : public PorousMediumFlowProblem<TypeTag> +{ + using ParentType = PorousMediumFlowProblem<TypeTag>; + using GridView = typename GET_PROP_TYPE(TypeTag, GridView); + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + using PrimaryVariables = typename GET_PROP_TYPE(TypeTag, PrimaryVariables); + using NumEqVector = typename GET_PROP_TYPE(TypeTag, NumEqVector); + using BoundaryTypes = typename GET_PROP_TYPE(TypeTag, BoundaryTypes); + using VolumeVariables = typename GET_PROP_TYPE(TypeTag, VolumeVariables); + using FVElementGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry)::LocalView; + using SubControlVolume = typename FVElementGeometry::SubControlVolume; + using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace; + using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); + + using Indices = typename GET_PROP_TYPE(TypeTag, ModelTraits)::Indices; + + using Element = typename GridView::template Codim<0>::Entity; + using GlobalPosition = typename Element::Geometry::GlobalCoordinate; + + using CouplingManager = typename GET_PROP_TYPE(TypeTag, CouplingManager); + +public: + DarcySubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry, + std::shared_ptr<CouplingManager> couplingManager) + : ParentType(fvGridGeometry, "Darcy"), eps_(1e-7), couplingManager_(couplingManager) + {} + + /*! + * \name Simulation steering + */ + // \{ + + /*! + * \brief Return the temperature within the domain in [K]. + * + */ + Scalar temperature() const + { return 273.15 + 10; } // 10°C + // \} + + /*! + * \name Boundary conditions + */ + // \{ + + /*! + * \brief Specifies which kind of boundary condition should be + * used for which equation on a given boundary control volume. + * + * \param element The element + * \param scvf The boundary sub control volume face + */ + BoundaryTypes boundaryTypes(const Element &element, const SubControlVolumeFace &scvf) const + { + BoundaryTypes values; + values.setAllNeumann(); + + if (onLowerBoundary_(scvf.center())) + values.setAllDirichlet(); + + return values; + } + + /*! + * \brief Evaluate the boundary conditions for a Dirichlet control volume. + * + * \param element The element for which the Dirichlet boundary condition is set + * \param scvf The boundary subcontrolvolumeface + * + * For this method, the \a values parameter stores primary variables. + */ + PrimaryVariables dirichlet(const Element &element, const SubControlVolumeFace &scvf) const + { + PrimaryVariables values(0.0); + values = initial(element); + + return values; + } + + /*! + * \brief Evaluate the boundary conditions for a Neumann control volume. + * + * \param element The element for which the Neumann boundary condition is set + * \param fvGeomentry The fvGeometry + * \param elemVolVars The element volume variables + * \param scvf The boundary sub control volume face + * + * For this method, the \a values variable stores primary variables. + */ + template<class ElementVolumeVariables> + NumEqVector neumann(const Element& element, + const FVElementGeometry& fvGeometry, + const ElementVolumeVariables& elemVolVars, + const SubControlVolumeFace& scvf) const + { + NumEqVector values(0.0); + + if (couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf)) + values[Indices::conti0EqIdx] = couplingManager().couplingData().massCouplingCondition(fvGeometry, elemVolVars, scvf); + + return values; + } + + // \} + + /*! + * \name Volume terms + */ + // \{ + /*! + * \brief Evaluate the source term for all phases within a given + * sub-control-volume. + * + * \param element The element for which the source term is set + * \param fvGeomentry The fvGeometry + * \param elemVolVars The element volume variables + * \param scv The subcontrolvolume + */ + template<class ElementVolumeVariables> + NumEqVector source(const Element &element, + const FVElementGeometry& fvGeometry, + const ElementVolumeVariables& elemVolVars, + const SubControlVolume &scv) const + { return NumEqVector(0.0); } + + // \} + + /*! + * \brief Evaluate the initial value for a control volume. + * + * \param element The element + * + * For this method, the \a priVars parameter stores primary + * variables. + */ + PrimaryVariables initial(const Element &element) const + { + return PrimaryVariables(0.0); + } + + // \} + + //! Set the coupling manager + void setCouplingManager(std::shared_ptr<CouplingManager> cm) + { couplingManager_ = cm; } + + //! Get the coupling manager + const CouplingManager& couplingManager() const + { return *couplingManager_; } + +private: + bool onLeftBoundary_(const GlobalPosition &globalPos) const + { return globalPos[0] < this->fvGridGeometry().bBoxMin()[0] + eps_; } + + bool onRightBoundary_(const GlobalPosition &globalPos) const + { return globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_; } + + bool onLowerBoundary_(const GlobalPosition &globalPos) const + { return globalPos[1] < this->fvGridGeometry().bBoxMin()[1] + eps_; } + + bool onUpperBoundary_(const GlobalPosition &globalPos) const + { return globalPos[1] > this->fvGridGeometry().bBoxMax()[1] - eps_; } + + Scalar eps_; + std::shared_ptr<CouplingManager> couplingManager_; +}; +} //end namespace + +#endif //DUMUX_DARCY_SUBPROBLEM_HH diff --git a/exercises/exercise-coupling-ff-pm/models/CMakeLists.txt b/exercises/exercise-coupling-ff-pm/models/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..1776059b237e7dd90b48d577bdf01b3f463e7c34 --- /dev/null +++ b/exercises/exercise-coupling-ff-pm/models/CMakeLists.txt @@ -0,0 +1,9 @@ +add_input_file_links() + +# executables for ex_interface_coupling_ff-pm +dune_add_test(NAME ex_models_coupling_ff-pm + SOURCES ex_models_coupling_ff-pm.cc + CMD_ARGS ex_models_coupling_ff-pm.input) + +# add tutorial to the common target +add_dependencies(test_exercises ex_models_coupling_ff-pm) diff --git a/exercises/exercise-coupling-ff-pm/models/ex_models_coupling_ff-pm.cc b/exercises/exercise-coupling-ff-pm/models/ex_models_coupling_ff-pm.cc new file mode 100644 index 0000000000000000000000000000000000000000..b54ae19ed5f17fa1d5bcc47a0d3e01f1c5f502ed --- /dev/null +++ b/exercises/exercise-coupling-ff-pm/models/ex_models_coupling_ff-pm.cc @@ -0,0 +1,296 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 2 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ +/*! + * \file + * + * \brief A test problem for the coupled Stokes/Darcy problem (1p) + */ +#include <config.h> + +#include <ctime> +#include <iostream> +#include <fstream> + +#include <dune/common/parallel/mpihelper.hh> +#include <dune/common/timer.hh> +#include <dune/istl/io.hh> + +#include <dumux/common/properties.hh> +#include <dumux/common/parameters.hh> +#include <dumux/common/dumuxmessage.hh> +#include <dumux/common/geometry/diameter.hh> +#include <dumux/linear/seqsolverbackend.hh> +#include <dumux/assembly/fvassembler.hh> +#include <dumux/assembly/diffmethod.hh> +#include <dumux/discretization/methods.hh> +#include <dumux/io/vtkoutputmodule.hh> +#include <dumux/io/staggeredvtkoutputmodule.hh> +#include <dumux/io/grid/gridmanager.hh> + +#include <dumux/multidomain/staggeredtraits.hh> +#include <dumux/multidomain/fvassembler.hh> +#include <dumux/multidomain/newtonsolver.hh> + +#include <dumux/multidomain/boundary/stokesdarcy/couplingmanager.hh> + +#include "ex_models_pmproblem.hh" +#include "ex_models_ffproblem.hh" + +namespace Dumux { +namespace Properties { + +SET_PROP(StokesTypeTag, CouplingManager) +{ + using Traits = StaggeredMultiDomainTraits<TypeTag, TypeTag, TTAG(DarcyTypeTag)>; + using type = Dumux::StokesDarcyCouplingManager<Traits>; +}; + +SET_PROP(DarcyTypeTag, CouplingManager) +{ + using Traits = StaggeredMultiDomainTraits<TTAG(StokesTypeTag), TTAG(StokesTypeTag), TypeTag>; + using type = Dumux::StokesDarcyCouplingManager<Traits>; +}; + +} // end namespace Properties +} // end namespace Dumux + +int main(int argc, char** argv) try +{ + using namespace Dumux; + + // initialize MPI, finalize is done automatically on exit + const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv); + + // print dumux start message + if (mpiHelper.rank() == 0) + DumuxMessage::print(/*firstCall=*/true); + + // parse command line arguments and input file + Parameters::init(argc, argv); + + // Define the sub problem type tags + using StokesTypeTag = TTAG(StokesTypeTag); + using DarcyTypeTag = TTAG(DarcyTypeTag); + + // try to create a grid (from the given grid file or the input file) + // for both sub-domains + using DarcyGridManager = Dumux::GridManager<typename GET_PROP_TYPE(DarcyTypeTag, Grid)>; + DarcyGridManager darcyGridManager; + darcyGridManager.init("Darcy"); // pass parameter group + + using StokesGridManager = Dumux::GridManager<typename GET_PROP_TYPE(StokesTypeTag, Grid)>; + StokesGridManager stokesGridManager; + stokesGridManager.init("Stokes"); // pass parameter group + + // we compute on the leaf grid view + const auto& darcyGridView = darcyGridManager.grid().leafGridView(); + const auto& stokesGridView = stokesGridManager.grid().leafGridView(); + + // create the finite volume grid geometry + using StokesFVGridGeometry = typename GET_PROP_TYPE(StokesTypeTag, FVGridGeometry); + auto stokesFvGridGeometry = std::make_shared<StokesFVGridGeometry>(stokesGridView); + stokesFvGridGeometry->update(); + using DarcyFVGridGeometry = typename GET_PROP_TYPE(DarcyTypeTag, FVGridGeometry); + auto darcyFvGridGeometry = std::make_shared<DarcyFVGridGeometry>(darcyGridView); + darcyFvGridGeometry->update(); + + using Traits = StaggeredMultiDomainTraits<StokesTypeTag, StokesTypeTag, DarcyTypeTag>; + + // the coupling manager + using CouplingManager = StokesDarcyCouplingManager<Traits>; + auto couplingManager = std::make_shared<CouplingManager>(stokesFvGridGeometry, darcyFvGridGeometry); + + // the indices + constexpr auto stokesCellCenterIdx = CouplingManager::stokesCellCenterIdx; + constexpr auto stokesFaceIdx = CouplingManager::stokesFaceIdx; + constexpr auto darcyIdx = CouplingManager::darcyIdx; + + // the problem (initial and boundary conditions) + using StokesProblem = typename GET_PROP_TYPE(StokesTypeTag, Problem); + auto stokesProblem = std::make_shared<StokesProblem>(stokesFvGridGeometry, couplingManager); + using DarcyProblem = typename GET_PROP_TYPE(DarcyTypeTag, Problem); + auto darcyProblem = std::make_shared<DarcyProblem>(darcyFvGridGeometry, couplingManager); + + // initialize the fluidsystem (tabulation) + GET_PROP_TYPE(StokesTypeTag, FluidSystem)::init(); + + // get some time loop parameters + using Scalar = typename GET_PROP_TYPE(StokesTypeTag, Scalar); + const auto tEnd = getParam<Scalar>("TimeLoop.TEnd"); + const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize"); + auto dt = getParam<Scalar>("TimeLoop.DtInitial"); + + // check if we are about to restart a previously interrupted simulation + Scalar restartTime = 0; + if (Parameters::getTree().hasKey("Restart") || Parameters::getTree().hasKey("TimeLoop.Restart")) + restartTime = getParam<Scalar>("TimeLoop.Restart"); + + // instantiate time loop + auto timeLoop = std::make_shared<CheckPointTimeLoop<Scalar>>(restartTime, dt, tEnd); + timeLoop->setMaxTimeStepSize(maxDt); + stokesProblem->setTimeLoop(timeLoop); + darcyProblem->setTimeLoop(timeLoop); + + // the solution vector + Traits::SolutionVector sol; + sol[stokesCellCenterIdx].resize(stokesFvGridGeometry->numCellCenterDofs()); + sol[stokesFaceIdx].resize(stokesFvGridGeometry->numFaceDofs()); + sol[darcyIdx].resize(darcyFvGridGeometry->numDofs()); + + const auto& cellCenterSol = sol[stokesCellCenterIdx]; + const auto& faceSol = sol[stokesFaceIdx]; + + // apply initial solution for instationary problems + typename GET_PROP_TYPE(StokesTypeTag, SolutionVector) stokesSol; + std::get<0>(stokesSol) = cellCenterSol; + std::get<1>(stokesSol) = faceSol; + stokesProblem->applyInitialSolution(stokesSol); + auto solStokesOld = stokesSol; + sol[stokesCellCenterIdx] = stokesSol[stokesCellCenterIdx]; + sol[stokesFaceIdx] = stokesSol[stokesFaceIdx]; + + darcyProblem->applyInitialSolution(sol[darcyIdx]); + auto solDarcyOld = sol[darcyIdx]; + + auto solOld = sol; + + couplingManager->init(stokesProblem, darcyProblem, sol); + + // the grid variables + using StokesGridVariables = typename GET_PROP_TYPE(StokesTypeTag, GridVariables); + auto stokesGridVariables = std::make_shared<StokesGridVariables>(stokesProblem, stokesFvGridGeometry); + stokesGridVariables->init(stokesSol, solStokesOld); + using DarcyGridVariables = typename GET_PROP_TYPE(DarcyTypeTag, GridVariables); + auto darcyGridVariables = std::make_shared<DarcyGridVariables>(darcyProblem, darcyFvGridGeometry); + darcyGridVariables->init(sol[darcyIdx], solDarcyOld); + + // intialize the vtk output module + const auto stokesName = getParam<std::string>("Problem.Name") + "_" + stokesProblem->name(); + const auto darcyName = getParam<std::string>("Problem.Name") + "_" + darcyProblem->name(); + + StaggeredVtkOutputModule<StokesTypeTag> stokesVtkWriter(*stokesProblem, *stokesFvGridGeometry, *stokesGridVariables, stokesSol, stokesName); + GET_PROP_TYPE(StokesTypeTag, VtkOutputFields)::init(stokesVtkWriter); + stokesVtkWriter.write(0.0); + + VtkOutputModule<DarcyTypeTag> darcyVtkWriter(*darcyProblem, *darcyFvGridGeometry, *darcyGridVariables, sol[darcyIdx], darcyName); + GET_PROP_TYPE(DarcyTypeTag, VtkOutputFields)::init(darcyVtkWriter); + darcyVtkWriter.write(0.0); + + // intialize the subproblems + darcyProblem->init(sol[darcyIdx], *darcyGridVariables); + + // the assembler with time loop for instationary problem + using Assembler = MultiDomainFVAssembler<Traits, CouplingManager, DiffMethod::numeric>; + auto assembler = std::make_shared<Assembler>(std::make_tuple(stokesProblem, stokesProblem, darcyProblem), + std::make_tuple(stokesFvGridGeometry->cellCenterFVGridGeometryPtr(), + stokesFvGridGeometry->faceFVGridGeometryPtr(), + darcyFvGridGeometry), + std::make_tuple(stokesGridVariables->cellCenterGridVariablesPtr(), + stokesGridVariables->faceGridVariablesPtr(), + darcyGridVariables), + couplingManager, + timeLoop); + + // the linear solver + using LinearSolver = UMFPackBackend; + auto linearSolver = std::make_shared<LinearSolver>(); + + // the primary variable switches used by the sub models and the non-linear solver +// using PriVarSwitchTuple = std::tuple<NoPrimaryVariableSwitch, NoPrimaryVariableSwitch, NoPrimaryVariableSwitch>; + using NewtonSolver = MultiDomainNewtonSolver<Assembler, LinearSolver, CouplingManager>; + NewtonSolver nonLinearSolver(assembler, linearSolver, couplingManager); + + // time loop + const auto episodeLength = getParam<Scalar>("TimeLoop.EpisodeLength"); + if (episodeLength > 0.0) + timeLoop->setPeriodicCheckPoint(episodeLength); + timeLoop->start(); do + { + // set previous solution for storage evaluations + assembler->setPreviousSolution(solOld); + + // solve the non-linear system with time step control + nonLinearSolver.solve(sol, *timeLoop); + + // make the new solution the old solution + solOld = sol; + stokesGridVariables->advanceTimeStep(); + darcyGridVariables->advanceTimeStep(); + + // advance to the time loop to the next step + timeLoop->advanceTimeStep(); + + // call the postTimeStep routine for output + darcyProblem->postTimeStep(sol[darcyIdx], *darcyGridVariables); + + // write vtk output + if (timeLoop->isCheckPoint() || timeLoop->finished() || episodeLength < 0.0) + { + stokesVtkWriter.write(timeLoop->time()); + darcyVtkWriter.write(timeLoop->time()); + } + + // report statistics of this time step + timeLoop->reportTimeStep(); + + // set new dt as suggested by newton solver + timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize())); + + } while (!timeLoop->finished()); + + timeLoop->finalize(stokesGridView.comm()); + timeLoop->finalize(darcyGridView.comm()); + + //////////////////////////////////////////////////////////// + // finalize, print dumux message to say goodbye + //////////////////////////////////////////////////////////// + + // print dumux end message + if (mpiHelper.rank() == 0) + { + Parameters::print(); + DumuxMessage::print(/*firstCall=*/false); + } + + return 0; +} // end main +catch (Dumux::ParameterException &e) +{ + std::cerr << std::endl << e << " ---> Abort!" << std::endl; + return 1; +} +catch (Dune::DGFException & e) +{ + std::cerr << "DGF exception thrown (" << e << + "). Most likely, the DGF file name is wrong " + "or the DGF file is corrupted, " + "e.g. missing hash at end of file or wrong number (dimensions) of entries." + << " ---> Abort!" << std::endl; + return 2; +} +catch (Dune::Exception &e) +{ + std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl; + return 3; +} +catch (...) +{ + std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl; + return 4; +} diff --git a/exercises/exercise-coupling-ff-pm/models/ex_models_coupling_ff-pm.input b/exercises/exercise-coupling-ff-pm/models/ex_models_coupling_ff-pm.input new file mode 100644 index 0000000000000000000000000000000000000000..d3f68518fa9a38504ee876af35f0c9e79f31cf17 --- /dev/null +++ b/exercises/exercise-coupling-ff-pm/models/ex_models_coupling_ff-pm.input @@ -0,0 +1,49 @@ +[TimeLoop] +DtInitial = 100 # s +EpisodeLength = -360 # s # 0.25 days +TEnd = 256000 # s # 2 days + +[Stokes.Grid] +LowerLeft = 0 1 +UpperRight = 1 2 +Cells = 16 16 + +[Darcy.Grid] +UpperRight = 1 1 +Cells = 16 16 + +[Stokes.Problem] +Name = stokes +EnableGravity = false +MoleFraction = 0.0 # - +Pressure = 1e5 # Pa +Velocity = 1e-3 # m/s + +[Darcy.Problem] +Name = darcy +EnableGravity = true +Saturation = 0.1 # - +MoleFraction = 0.1 # - +Pressure = 1e5 # Pa + +[Darcy.SpatialParams] +Permeability = 2.65e-10 # m^2 +Porosity = 0.4 # - +AlphaBeaversJoseph = 1.0 # - +# EXNUMBER >= 1 +Swr = 0.005 +Snr = 0.01 +VgAlpha = 6.5e-4 +VgN = 8.0 + +[Problem] +Name = models_coupling +PlotFluxes = false +PlotStorage = false + +[Newton] +MaxSteps = 12 +MaxRelativeShift = 1e-5 + +[Vtk] +AddVelocity = 1 diff --git a/exercises/exercise-coupling-ff-pm/models/ex_models_ffproblem.hh b/exercises/exercise-coupling-ff-pm/models/ex_models_ffproblem.hh new file mode 100644 index 0000000000000000000000000000000000000000..1fe98c085805a45045474cece286db0f4561b399 --- /dev/null +++ b/exercises/exercise-coupling-ff-pm/models/ex_models_ffproblem.hh @@ -0,0 +1,341 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 2 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ +/*! + * \file + * \ingroup NavierStokesTests + * \brief A simple Stokes test problem for the staggered grid (Navier-)Stokes model. + */ +#ifndef DUMUX_STOKES1P2C_SUBPROBLEM_HH +#define DUMUX_STOKES1P2C_SUBPROBLEM_HH + +#include <dune/grid/yaspgrid.hh> + +#include <dumux/material/fluidsystems/1padapter.hh> +#include <dumux/material/fluidsystems/h2oair.hh> + +#include <dumux/freeflow/navierstokes/problem.hh> +#include <dumux/discretization/staggered/freeflow/properties.hh> +#include <dumux/freeflow/compositional/navierstokesncmodel.hh> + +namespace Dumux +{ +template <class TypeTag> +class StokesSubProblem; + +namespace Properties +{ +NEW_TYPE_TAG(StokesTypeTag, INHERITS_FROM(StaggeredFreeFlowModel, NavierStokesNC)); + +// Set the grid type +SET_TYPE_PROP(StokesTypeTag, Grid, Dune::YaspGrid<2, Dune::EquidistantOffsetCoordinates<typename GET_PROP_TYPE(TypeTag, Scalar), 2> >); + +// The fluid system +SET_PROP(StokesTypeTag, FluidSystem) +{ + using H2OAir = FluidSystems::H2OAir<typename GET_PROP_TYPE(TypeTag, Scalar)>; + using type = FluidSystems::OnePAdapter<H2OAir, H2OAir::gasPhaseIdx>; +}; + +// Do not replace one equation with a total mass balance +SET_INT_PROP(StokesTypeTag, ReplaceCompEqIdx, 3); + +// Use formulation based on mass fractions +SET_BOOL_PROP(StokesTypeTag, UseMoles, true); + +// Set the problem property +SET_TYPE_PROP(StokesTypeTag, Problem, Dumux::StokesSubProblem<TypeTag> ); + +SET_BOOL_PROP(StokesTypeTag, EnableFVGridGeometryCache, true); +SET_BOOL_PROP(StokesTypeTag, EnableGridFluxVariablesCache, true); +SET_BOOL_PROP(StokesTypeTag, EnableGridVolumeVariablesCache, true); + +SET_BOOL_PROP(StokesTypeTag, EnableInertiaTerms, false); +} + +/*! + * \ingroup NavierStokesTests + * \brief Test problem for the one-phase compositional (Navier-) Stokes problem. + * + * Horizontal flow from left to right with a parabolic velocity profile. + */ +template <class TypeTag> +class StokesSubProblem : public NavierStokesProblem<TypeTag> +{ + using ParentType = NavierStokesProblem<TypeTag>; + + using GridView = typename GET_PROP_TYPE(TypeTag, GridView); + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + using FluidSystem = typename GET_PROP_TYPE(TypeTag, FluidSystem); + using Indices = typename GET_PROP_TYPE(TypeTag, ModelTraits)::Indices; + using BoundaryTypes = typename GET_PROP_TYPE(TypeTag, BoundaryTypes); + + using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); + using FVElementGeometry = typename FVGridGeometry::LocalView; + using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace; + using Element = typename GridView::template Codim<0>::Entity; + using ElementVolumeVariables = typename GET_PROP_TYPE(TypeTag, GridVolumeVariables)::LocalView; + using ElementFaceVariables = typename GET_PROP_TYPE(TypeTag, GridFaceVariables)::LocalView; + using FluidState = typename GET_PROP_TYPE(TypeTag, FluidState); + + using GlobalPosition = typename Element::Geometry::GlobalCoordinate; + + using PrimaryVariables = typename GET_PROP_TYPE(TypeTag, PrimaryVariables); + using NumEqVector = typename GET_PROP_TYPE(TypeTag, NumEqVector); + + using CouplingManager = typename GET_PROP_TYPE(TypeTag, CouplingManager); + using TimeLoopPtr = std::shared_ptr<TimeLoop<Scalar>>; + + static constexpr bool useMoles = GET_PROP_TYPE(TypeTag, ModelTraits)::useMoles(); + +public: + StokesSubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry, std::shared_ptr<CouplingManager> couplingManager) + : ParentType(fvGridGeometry, "Stokes"), eps_(1e-6), couplingManager_(couplingManager) + { + velocity_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.Velocity"); + pressure_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.Pressure"); + moleFraction_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.MoleFraction"); + } + + /*! + * \name Problem parameters + */ + // \{ + + + bool shouldWriteRestartFile() const + { return false; } + + /*! + * \brief Return the temperature within the domain in [K]. + */ + Scalar temperature() const + { return 293.15; } + + /*! + * \brief Return the sources within the domain. + * + * \param globalPos The global position + */ + NumEqVector sourceAtPos(const GlobalPosition &globalPos) const + { return NumEqVector(0.0); } + + // \} + /*! + * \name Boundary conditions + */ + // \{ + + /*! + * \brief Specifies which kind of boundary condition should be + * used for which equation on a given boundary segment. + * + * \param element The finite element + * \param scvf The sub control volume face + */ + BoundaryTypes boundaryTypes(const Element& element, + const SubControlVolumeFace& scvf) const + { + BoundaryTypes values; + + const auto& globalPos = scvf.center(); + + if(onLeftBoundary_(globalPos)) + { + values.setDirichlet(Indices::conti0EqIdx + 1); + values.setDirichlet(Indices::velocityXIdx); + values.setDirichlet(Indices::velocityYIdx); + } + else if(onRightBoundary_(globalPos)) + { + values.setDirichlet(Indices::pressureIdx); + values.setOutflow(Indices::conti0EqIdx + 1); + } + else + { + values.setDirichlet(Indices::velocityXIdx); + values.setDirichlet(Indices::velocityYIdx); + values.setNeumann(Indices::conti0EqIdx); + values.setNeumann(Indices::conti0EqIdx + 1); + } + + if (couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf)) + { + values.setCouplingNeumann(Indices::conti0EqIdx); + values.setCouplingNeumann(Indices::conti0EqIdx + 1); + values.setCouplingNeumann(Indices::momentumYBalanceIdx); + values.setBJS(Indices::momentumXBalanceIdx); + } + + return values; + } + + /*! + * \brief Evaluate the boundary conditions for a Dirichlet control volume. + * + * \param element The element + * \param scvf The subcontrolvolume face + */ + PrimaryVariables dirichletAtPos(const GlobalPosition& pos) const + { + PrimaryVariables values(0.0); + values = initialAtPos(pos); + + return values; + } + + /*! + * \brief Evaluate the boundary conditions for a Neumann control volume. + * + * \param element The element for which the Neumann boundary condition is set + * \param fvGeomentry The fvGeometry + * \param elemVolVars The element volume variables + * \param elemFaceVars The element face variables + * \param scvf The boundary sub control volume face + */ + NumEqVector neumann(const Element& element, + const FVElementGeometry& fvGeometry, + const ElementVolumeVariables& elemVolVars, + const ElementFaceVariables& elemFaceVars, + const SubControlVolumeFace& scvf) const + { + PrimaryVariables values(0.0); + + if(couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf)) + { + values[Indices::momentumYBalanceIdx] = couplingManager().couplingData().momentumCouplingCondition(fvGeometry, elemVolVars, elemFaceVars, scvf); + + const auto massFlux = couplingManager().couplingData().massCouplingCondition(fvGeometry, elemVolVars, elemFaceVars, scvf); + values[Indices::conti0EqIdx] = massFlux[0]; + values[Indices::conti0EqIdx + 1] = massFlux[1]; + } + return values; + } + + // \} + + /*! + * \brief Set the coupling manager + */ + void setCouplingManager(std::shared_ptr<CouplingManager> cm) + { couplingManager_ = cm; } + + /*! + * \brief Get the coupling manager + */ + const CouplingManager& couplingManager() const + { return *couplingManager_; } + + /*! + * \name Volume terms + */ + // \{ + + /*! + * \brief Evaluate the initial value for a control volume. + * + * \param globalPos The global position + */ + PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const + { + FluidState fluidState; + updateFluidStateForBC_(fluidState, pressure_); + const Scalar density = FluidSystem::density(fluidState, 0); + + PrimaryVariables values(0.0); + values[Indices::pressureIdx] = pressure_ + density*this->gravity()[1]*(globalPos[1] - this->fvGridGeometry().bBoxMin()[1]); + values[Indices::conti0EqIdx + 1] = moleFraction_; + values[Indices::velocityXIdx] = 4.0 * velocity_ * (globalPos[1] - this->fvGridGeometry().bBoxMin()[1]) + * (this->fvGridGeometry().bBoxMax()[1] - globalPos[1]) + / (height_() * height_()); + + return values; + } + + void setTimeLoop(TimeLoopPtr timeLoop) + { timeLoop_ = timeLoop; } + + /*! + * \brief Returns the intrinsic permeability of required as input parameter for the Beavers-Joseph-Saffman boundary condition + */ + Scalar permeability(const SubControlVolumeFace& scvf) const + { + return couplingManager().couplingData().darcyPermeability(scvf); + } + + /*! + * \brief Returns the alpha value required as input parameter for the Beavers-Joseph-Saffman boundary condition + */ + Scalar alphaBJ(const SubControlVolumeFace& scvf) const + { + return couplingManager().problem(CouplingManager::darcyIdx).spatialParams().beaversJosephCoeffAtPos(scvf.center()); + } + + // \} + +private: + bool onLeftBoundary_(const GlobalPosition &globalPos) const + { return globalPos[0] < this->fvGridGeometry().bBoxMin()[0] + eps_; } + + bool onRightBoundary_(const GlobalPosition &globalPos) const + { return globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_; } + + bool onLowerBoundary_(const GlobalPosition &globalPos) const + { return globalPos[1] < this->fvGridGeometry().bBoxMin()[1] + eps_; } + + bool onUpperBoundary_(const GlobalPosition &globalPos) const + { return globalPos[1] > this->fvGridGeometry().bBoxMax()[1] - eps_; } + + //! \brief updates the fluid state to obtain required quantities for IC/BC + void updateFluidStateForBC_(FluidState& fluidState, const Scalar pressure) const + { + fluidState.setTemperature(temperature()); + fluidState.setPressure(0, pressure); + fluidState.setSaturation(0, 1.0); + fluidState.setMoleFraction(0, 1, moleFraction_); + fluidState.setMoleFraction(0, 0, 1.0 - moleFraction_); + + typename FluidSystem::ParameterCache paramCache; + paramCache.updatePhase(fluidState, 0); + + const Scalar density = FluidSystem::density(fluidState, paramCache, 0); + fluidState.setDensity(0, density); + + const Scalar molarDensity = FluidSystem::molarDensity(fluidState, paramCache, 0); + fluidState.setMolarDensity(0, molarDensity); + + const Scalar enthalpy = FluidSystem::enthalpy(fluidState, paramCache, 0); + fluidState.setEnthalpy(0, enthalpy); + } + // the height of the free-flow domain + const Scalar height_() const + { return this->fvGridGeometry().bBoxMax()[1] - this->fvGridGeometry().bBoxMin()[1]; } + + Scalar eps_; + + Scalar velocity_; + Scalar pressure_; + Scalar moleFraction_; + + TimeLoopPtr timeLoop_; + + std::shared_ptr<CouplingManager> couplingManager_; +}; +} //end namespace + +#endif // DUMUX_STOKES1P2C_SUBPROBLEM_HH diff --git a/exercises/exercise-coupling-ff-pm/models/ex_models_pmproblem.hh b/exercises/exercise-coupling-ff-pm/models/ex_models_pmproblem.hh new file mode 100644 index 0000000000000000000000000000000000000000..0e48d23560788095b46c641d55c64606f9ecf6d6 --- /dev/null +++ b/exercises/exercise-coupling-ff-pm/models/ex_models_pmproblem.hh @@ -0,0 +1,404 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 2 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ +/*! + * \file + * + * \brief A simple Darcy test problem (cell-centered finite volume method). + */ +#ifndef DUMUX_DARCY_SUBPROBLEM_HH +#define DUMUX_DARCY_SUBPROBLEM_HH + +#include <dune/grid/yaspgrid.hh> + +#include <dumux/discretization/cellcentered/tpfa/properties.hh> +#include <dumux/io/gnuplotinterface.hh> +#include <dumux/material/fluidsystems/1padapter.hh> +#include <dumux/material/fluidsystems/h2oair.hh> +#include <dumux/material/fluidmatrixinteractions/diffusivityconstanttortuosity.hh> + +#include <dumux/porousmediumflow/problem.hh> + +#include <dumux/porousmediumflow/1pnc/model.hh> +#include "../1pspatialparams.hh" + +namespace Dumux +{ +template <class TypeTag> +class DarcySubProblem; + +namespace Properties +{ +NEW_TYPE_TAG(DarcyTypeTag, INHERITS_FROM(CCTpfaModel, OnePNC)); + +// Set the problem property +SET_TYPE_PROP(DarcyTypeTag, Problem, Dumux::DarcySubProblem<TypeTag>); + +// The fluid system +SET_PROP(DarcyTypeTag, FluidSystem) +{ + using H2OAir = FluidSystems::H2OAir<typename GET_PROP_TYPE(TypeTag, Scalar)>; + using type = FluidSystems::OnePAdapter<H2OAir, H2OAir::gasPhaseIdx>; +}; + +// Use moles +SET_BOOL_PROP(DarcyTypeTag, UseMoles, true); + +// Do not replace one equation with a total mass balance +SET_INT_PROP(DarcyTypeTag, ReplaceCompEqIdx, 3); + +//! Use a model with constant tortuosity for the effective diffusivity +SET_TYPE_PROP(DarcyTypeTag, EffectiveDiffusivityModel, + DiffusivityConstantTortuosity<typename GET_PROP_TYPE(TypeTag, Scalar)>); + +// Set the grid type +SET_TYPE_PROP(DarcyTypeTag, Grid, Dune::YaspGrid<2>); + +// Set the spatial paramaters type +SET_TYPE_PROP(DarcyTypeTag, SpatialParams, OnePSpatialParams<TypeTag>); +} + +template <class TypeTag> +class DarcySubProblem : public PorousMediumFlowProblem<TypeTag> +{ + using ParentType = PorousMediumFlowProblem<TypeTag>; + using GridView = typename GET_PROP_TYPE(TypeTag, GridView); + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + using PrimaryVariables = typename GET_PROP_TYPE(TypeTag, PrimaryVariables); + using FluidSystem = typename GET_PROP_TYPE(TypeTag, FluidSystem); + using NumEqVector = typename GET_PROP_TYPE(TypeTag, NumEqVector); + using BoundaryTypes = typename GET_PROP_TYPE(TypeTag, BoundaryTypes); + using FVElementGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry)::LocalView; + using SubControlVolume = typename FVElementGeometry::SubControlVolume; + using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace; + using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); + + // copy some indices for convenience + using Indices = typename GET_PROP_TYPE(TypeTag, ModelTraits)::Indices; + enum { + // grid and world dimension + dim = GridView::dimension, + dimworld = GridView::dimensionworld, + + // primary variable indices + conti0EqIdx = Indices::conti0EqIdx, + pressureIdx = Indices::pressureIdx, + phaseIdx = 0, + transportCompIdx = 1 + }; + + using Element = typename GridView::template Codim<0>::Entity; + using GlobalPosition = Dune::FieldVector<Scalar, dimworld>; + + using CouplingManager = typename GET_PROP_TYPE(TypeTag, CouplingManager); + using TimeLoopPtr = std::shared_ptr<TimeLoop<Scalar>>; + +public: + DarcySubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry, + std::shared_ptr<CouplingManager> couplingManager) + : ParentType(fvGridGeometry, "Darcy"), eps_(1e-7), couplingManager_(couplingManager) + { + moleFraction_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.MoleFraction"); + pressure_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.Pressure"); + + // initialize output file + plotFluxes_ = getParamFromGroup<bool>(this->paramGroup(), "Problem.PlotFluxes", false); + plotStorage_ = getParamFromGroup<bool>(this->paramGroup(), "Problem.PlotStorage", false); + storageFileName_ = "storage_" + getParam<std::string>("Problem.Name") + "_" + this->name() + ".csv"; + storageFile_.open(storageFileName_); + storageFile_ << "#Time[s]" << ";" + << "WaterMass[kg]" << ";" + << "WaterMassLoss[kg]" << ";" + << "EvaporationRate[mm/d]" + << std::endl; + } + + /*! + * \name Simulation steering + */ + // \{ + + /*! + * \brief Initialize the problem. + */ + template<class SolutionVector, class GridVariables> + void init(const SolutionVector& curSol, + const GridVariables& gridVariables) + { } + + template<class SolutionVector, class GridVariables> + void postTimeStep(const SolutionVector& curSol, + const GridVariables& gridVariables) + + { + evaluateWaterMassStorageTerm(curSol, gridVariables); + evaluateInterfaceFluxes(curSol, gridVariables); + + gnuplotStorage_.resetPlot(); + gnuplotStorage_.setDatafileSeparator(';'); + gnuplotStorage_.setXlabel("time [d]"); + gnuplotStorage_.setXRange(0.0, getParam<Scalar>("TimeLoop.TEnd")); + gnuplotStorage_.setYlabel("evaporation rate [mm/d]"); + gnuplotStorage_.setOption("set yrange [0.0:]"); + gnuplotStorage_.setOption("set y2label 'cumulative mass loss'"); + gnuplotStorage_.setOption("set y2range [0.0:0.5]"); + gnuplotStorage_.setOption("set y2range [0.0:0.5]"); + gnuplotStorage_.addFileToPlot(storageFileName_, "using 1:4 with lines title 'evaporation rate'"); + gnuplotStorage_.addFileToPlot(storageFileName_, "using 1:3 axes x1y2 with lines title 'cumulative mass loss'"); + if (plotStorage_) + gnuplotStorage_.plot("temp"); + } + + template<class SolutionVector, class GridVariables> + Scalar evaluateWaterMassStorageTerm(const SolutionVector& curSol, + const GridVariables& gridVariables) + + { + // compute the mass in the entire domain + Scalar waterMass = 0.0; + + for (const auto& element : elements(this->fvGridGeometry().gridView())) + { + auto fvGeometry = localView(this->fvGridGeometry()); + fvGeometry.bindElement(element); + + auto elemVolVars = localView(gridVariables.curGridVolVars()); + elemVolVars.bindElement(element, fvGeometry, curSol); + + for (auto&& scv : scvs(fvGeometry)) + { + const auto& volVars = elemVolVars[scv]; + // insert calculation of the water mass here + waterMass += 0.0; + } + } + + Scalar cumMassLoss = initialWaterContent_ - waterMass; + Scalar evaporationRate = (lastWaterMass_ - waterMass) * 86400 + / (this->fvGridGeometry().bBoxMax()[0] - this->fvGridGeometry().bBoxMin()[0]) + / timeLoop_->timeStepSize(); + lastWaterMass_ = waterMass; + + storageFile_ << timeLoop_->time() << ";" + << waterMass << ";" + << cumMassLoss << ";" + << evaporationRate + << std::endl; + + return waterMass; + } + + template<class SolutionVector, class GridVariables> + void evaluateInterfaceFluxes(const SolutionVector& curSol, + const GridVariables& gridVariables) + + { + std::vector<Scalar> x; + std::vector<Scalar> y; + + for (const auto& element : elements(this->fvGridGeometry().gridView())) + { + auto fvGeometry = localView(this->fvGridGeometry()); + fvGeometry.bindElement(element); + + auto elemVolVars = localView(gridVariables.curGridVolVars()); + elemVolVars.bindElement(element, fvGeometry, curSol); + + for (auto&& scvf : scvfs(fvGeometry)) + { + if (!couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf)) + continue; + + // NOTE: binding the coupling context is necessary + couplingManager_->bindCouplingContext(CouplingManager::darcyIdx, element); + NumEqVector flux(0.0); // use "massCouplingCondition" from the couplingManager here + + x.push_back(scvf.center()[0]); + y.push_back(flux[transportCompIdx]); + } + } + + gnuplotInterfaceFluxes_.resetPlot(); + gnuplotInterfaceFluxes_.setXlabel("x-position [m]"); + gnuplotInterfaceFluxes_.setXRange(this->fvGridGeometry().bBoxMin()[0], this->fvGridGeometry().bBoxMax()[0]); + gnuplotInterfaceFluxes_.setYlabel("flux [kg/(m^2 s)]"); + gnuplotInterfaceFluxes_.setYRange(-5e-4, 0.0); + gnuplotInterfaceFluxes_.setOption("set label 'time: " + std::to_string(timeLoop_->time()/86400.) + "d' at graph 0.8,0.8 "); + std::string fluxFileName = "flux_" + std::to_string(timeLoop_->timeStepIndex()) + + "_" + getParam<std::string>("Problem.Name") + "_" + this->name() + ".csv"; + gnuplotInterfaceFluxes_.addDataSetToPlot(x, y, fluxFileName, "with lines title 'water mass flux'"); + if (plotFluxes_) + gnuplotInterfaceFluxes_.plot("flux_" + std::to_string(timeLoop_->timeStepIndex())); + } + + /*! + * \brief Returns true if a restart file should be written to + * disk. + */ + bool shouldWriteRestartFile() const + { return false; } + + /*! + * \name Problem parameters + */ + // \{ + + bool shouldWriteOutput() const // define output + { return true; } + + /*! + * \brief Return the temperature within the domain in [K]. + * + */ + Scalar temperature() const + { return 293.15; } + // \} + + /*! + * \name Boundary conditions + */ + // \{ + + /*! + * \brief Specifies which kind of boundary condition should be + * used for which equation on a given boundary control volume. + * + * \param element The element + * \param scvf The boundary sub control volume face + */ + BoundaryTypes boundaryTypes(const Element& element, const SubControlVolumeFace& scvf) const + { + BoundaryTypes values; + values.setAllNeumann(); + + if (couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf)) + values.setAllCouplingNeumann(); + + return values; + } + + /*! + * \brief Evaluate the boundary conditions for a Neumann control volume. + * + * \param element The element for which the Neumann boundary condition is set + * \param fvGeomentry The fvGeometry + * \param elemVolVars The element volume variables + * \param scvf The boundary sub control volume face + * + * For this method, the \a values variable stores primary variables. + */ + template<class ElementVolumeVariables> + NumEqVector neumann(const Element& element, + const FVElementGeometry& fvGeometry, + const ElementVolumeVariables& elemVolVars, + const SubControlVolumeFace& scvf) const + { + NumEqVector values(0.0); + + if (couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf)) + values = couplingManager().couplingData().massCouplingCondition(fvGeometry, elemVolVars, scvf); + + return values; + } + + // \} + + /*! + * \name Volume terms + */ + // \{ + /*! + * \brief Evaluate the source term for all phases within a given + * sub-control-volume. + * + * \param element The element for which the source term is set + * \param fvGeomentry The fvGeometry + * \param elemVolVars The element volume variables + * \param scv The subcontrolvolume + */ + template<class ElementVolumeVariables> + NumEqVector source(const Element &element, + const FVElementGeometry& fvGeometry, + const ElementVolumeVariables& elemVolVars, + const SubControlVolume &scv) const + { return NumEqVector(0.0); } + + // \} + + /*! + * \brief Evaluate the initial value for a control volume. + * + * \param element The element + * + * For this method, the \a priVars parameter stores primary + * variables. + */ + PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const + { + PrimaryVariables values(0.0); + values[transportCompIdx] = moleFraction_; + values[pressureIdx] = pressure_; + return values; + } + + // \} + + //! Set the coupling manager + void setCouplingManager(std::shared_ptr<CouplingManager> cm) + { couplingManager_ = cm; } + + //! Get the coupling manager + const CouplingManager& couplingManager() const + { return *couplingManager_; } + + void setTimeLoop(TimeLoopPtr timeLoop) + { timeLoop_ = timeLoop; } + +private: + bool onLeftBoundary_(const GlobalPosition &globalPos) const + { return globalPos[0] < this->fvGridGeometry().bBoxMin()[0] + eps_; } + + bool onRightBoundary_(const GlobalPosition &globalPos) const + { return globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_; } + + bool onLowerBoundary_(const GlobalPosition &globalPos) const + { return globalPos[1] < this->fvGridGeometry().bBoxMin()[1] + eps_; } + + bool onUpperBoundary_(const GlobalPosition &globalPos) const + { return globalPos[1] > this->fvGridGeometry().bBoxMax()[1] - eps_; } + + Scalar eps_; + Scalar moleFraction_; + Scalar pressure_; + + Scalar initialWaterContent_ = 0.0; + Scalar lastWaterMass_ = 0.0; + + TimeLoopPtr timeLoop_; + std::shared_ptr<CouplingManager> couplingManager_; + + std::string storageFileName_; + std::ofstream storageFile_; + bool plotFluxes_; + bool plotStorage_; + Dumux::GnuplotInterface<Scalar> gnuplotInterfaceFluxes_; + Dumux::GnuplotInterface<Scalar> gnuplotStorage_; +}; +} //end namespace + +#endif //DUMUX_DARCY_SUBPROBLEM_HH diff --git a/exercises/exercise-coupling-ff-pm/turbulence/CMakeLists.txt b/exercises/exercise-coupling-ff-pm/turbulence/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..3fb93b14e46940ca5110f1b2ab3f69143b089593 --- /dev/null +++ b/exercises/exercise-coupling-ff-pm/turbulence/CMakeLists.txt @@ -0,0 +1,9 @@ +add_input_file_links() + +# executables for ex_interface_coupling_ff-pm +dune_add_test(NAME ex_turbulence_coupling_ff-pm + SOURCES ex_turbulence_coupling_ff-pm.cc + CMD_ARGS ex_turbulence_coupling_ff-pm.input) + +# add tutorial to the common target +add_dependencies(test_exercises ex_turbulence_coupling_ff-pm) diff --git a/exercises/exercise-coupling-ff-pm/turbulence/ex_turbulence_coupling_ff-pm.cc b/exercises/exercise-coupling-ff-pm/turbulence/ex_turbulence_coupling_ff-pm.cc new file mode 100644 index 0000000000000000000000000000000000000000..80a5b9be520e8573a020b083c213fa95c2dfee9e --- /dev/null +++ b/exercises/exercise-coupling-ff-pm/turbulence/ex_turbulence_coupling_ff-pm.cc @@ -0,0 +1,300 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 2 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ +/*! + * \file + * + * \brief A test problem for the isothermal coupled Stokes/Darcy problem (1p2c/2p2c) + */ +#include <config.h> + +#include <ctime> +#include <iostream> +#include <fstream> + +#include <dune/common/parallel/mpihelper.hh> +#include <dune/common/timer.hh> +#include <dune/istl/io.hh> + +#include <dumux/common/properties.hh> +#include <dumux/common/parameters.hh> +#include <dumux/common/dumuxmessage.hh> +#include <dumux/common/geometry/diameter.hh> +#include <dumux/linear/seqsolverbackend.hh> +#include <dumux/assembly/fvassembler.hh> +#include <dumux/assembly/diffmethod.hh> +#include <dumux/discretization/methods.hh> +#include <dumux/io/vtkoutputmodule.hh> +#include <dumux/io/staggeredvtkoutputmodule.hh> +#include <dumux/io/grid/gridmanager.hh> + +#include <dumux/multidomain/staggeredtraits.hh> +#include <dumux/multidomain/fvassembler.hh> +#include <dumux/multidomain/privarswitchnewtonsolver.hh> + +#include <dumux/multidomain/boundary/stokesdarcy/couplingmanager.hh> + +#include "ex_turbulence_pmproblem.hh" +#include "ex_turbulence_ffproblem.hh" + +namespace Dumux { +namespace Properties { + +SET_PROP(ZeroEqTypeTag, CouplingManager) +{ + using Traits = StaggeredMultiDomainTraits<TypeTag, TypeTag, TTAG(DarcyTwoPTwoCTypeTag)>; + using type = Dumux::StokesDarcyCouplingManager<Traits>; +}; + +SET_PROP(DarcyTwoPTwoCTypeTag, CouplingManager) +{ + using Traits = StaggeredMultiDomainTraits<TTAG(ZeroEqTypeTag), TTAG(ZeroEqTypeTag), TypeTag>; + using type = Dumux::StokesDarcyCouplingManager<Traits>; +}; + +} // end namespace Properties +} // end namespace Dumux + +int main(int argc, char** argv) try +{ + using namespace Dumux; + + // initialize MPI, finalize is done automatically on exit + const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv); + + // print dumux start message + if (mpiHelper.rank() == 0) + DumuxMessage::print(/*firstCall=*/true); + + // parse command line arguments and input file + Parameters::init(argc, argv); + + // Define the sub problem type tags + using StokesTypeTag = TTAG(ZeroEqTypeTag); + using DarcyTypeTag = TTAG(DarcyTwoPTwoCTypeTag); + + // try to create a grid (from the given grid file or the input file) + // for both sub-domains + using DarcyGridManager = Dumux::GridManager<typename GET_PROP_TYPE(DarcyTypeTag, Grid)>; + DarcyGridManager darcyGridManager; + darcyGridManager.init("Darcy"); // pass parameter group + + using StokesGridManager = Dumux::GridManager<typename GET_PROP_TYPE(StokesTypeTag, Grid)>; + StokesGridManager stokesGridManager; + stokesGridManager.init("Stokes"); // pass parameter group + + // we compute on the leaf grid view + const auto& darcyGridView = darcyGridManager.grid().leafGridView(); + const auto& stokesGridView = stokesGridManager.grid().leafGridView(); + + // create the finite volume grid geometry + using StokesFVGridGeometry = typename GET_PROP_TYPE(StokesTypeTag, FVGridGeometry); + auto stokesFvGridGeometry = std::make_shared<StokesFVGridGeometry>(stokesGridView); + stokesFvGridGeometry->update(); + using DarcyFVGridGeometry = typename GET_PROP_TYPE(DarcyTypeTag, FVGridGeometry); + auto darcyFvGridGeometry = std::make_shared<DarcyFVGridGeometry>(darcyGridView); + darcyFvGridGeometry->update(); + + using Traits = StaggeredMultiDomainTraits<StokesTypeTag, StokesTypeTag, DarcyTypeTag>; + + // the coupling manager + using CouplingManager = StokesDarcyCouplingManager<Traits>; + auto couplingManager = std::make_shared<CouplingManager>(stokesFvGridGeometry, darcyFvGridGeometry); + + // the indices + constexpr auto stokesCellCenterIdx = CouplingManager::stokesCellCenterIdx; + constexpr auto stokesFaceIdx = CouplingManager::stokesFaceIdx; + constexpr auto darcyIdx = CouplingManager::darcyIdx; + + // the problem (initial and boundary conditions) + using StokesProblem = typename GET_PROP_TYPE(StokesTypeTag, Problem); + auto stokesProblem = std::make_shared<StokesProblem>(stokesFvGridGeometry, couplingManager); + using DarcyProblem = typename GET_PROP_TYPE(DarcyTypeTag, Problem); + auto darcyProblem = std::make_shared<DarcyProblem>(darcyFvGridGeometry, couplingManager); + + // initialize the fluidsystem (tabulation) + GET_PROP_TYPE(StokesTypeTag, FluidSystem)::init(); + + // get some time loop parameters + using Scalar = typename GET_PROP_TYPE(StokesTypeTag, Scalar); + const auto tEnd = getParam<Scalar>("TimeLoop.TEnd"); + const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize"); + auto dt = getParam<Scalar>("TimeLoop.DtInitial"); + + // check if we are about to restart a previously interrupted simulation + Scalar restartTime = 0; + if (Parameters::getTree().hasKey("Restart") || Parameters::getTree().hasKey("TimeLoop.Restart")) + restartTime = getParam<Scalar>("TimeLoop.Restart"); + + // instantiate time loop + auto timeLoop = std::make_shared<TimeLoop<Scalar>>(restartTime, dt, tEnd); + timeLoop->setMaxTimeStepSize(maxDt); + + // set timeloop for the subproblems, needed for boundary value variations + stokesProblem->setTimeLoop(timeLoop); + darcyProblem->setTimeLoop(timeLoop); + + // the solution vector + Traits::SolutionVector sol; + sol[stokesCellCenterIdx].resize(stokesFvGridGeometry->numCellCenterDofs()); + sol[stokesFaceIdx].resize(stokesFvGridGeometry->numFaceDofs()); + sol[darcyIdx].resize(darcyFvGridGeometry->numDofs()); + + // apply initial solution for instationary problems + // auxiliary free flow solution vector + typename GET_PROP_TYPE(StokesTypeTag, SolutionVector) stokesSol; + stokesSol[stokesCellCenterIdx].resize(sol[stokesCellCenterIdx].size()); + stokesSol[stokesFaceIdx].resize(sol[stokesFaceIdx].size()); + stokesProblem->applyInitialSolution(stokesSol); + auto solStokesOld = stokesSol; + sol[stokesCellCenterIdx] = stokesSol[stokesCellCenterIdx]; + sol[stokesFaceIdx] = stokesSol[stokesFaceIdx]; + + // TODO: update static wall properties + // TODO: update dynamic wall properties + + darcyProblem->applyInitialSolution(sol[darcyIdx]); + auto solDarcyOld = sol[darcyIdx]; + + auto solOld = sol; + + couplingManager->init(stokesProblem, darcyProblem, sol); + + // the grid variables + using StokesGridVariables = typename GET_PROP_TYPE(StokesTypeTag, GridVariables); + auto stokesGridVariables = std::make_shared<StokesGridVariables>(stokesProblem, stokesFvGridGeometry); + stokesGridVariables->init(stokesSol, solStokesOld); + using DarcyGridVariables = typename GET_PROP_TYPE(DarcyTypeTag, GridVariables); + auto darcyGridVariables = std::make_shared<DarcyGridVariables>(darcyProblem, darcyFvGridGeometry); + darcyGridVariables->init(sol[darcyIdx], solDarcyOld); + + // intialize the vtk output module + const auto stokesName = getParam<std::string>("Problem.Name") + "_" + stokesProblem->name(); + const auto darcyName = getParam<std::string>("Problem.Name") + "_" + darcyProblem->name(); + + StaggeredVtkOutputModule<StokesTypeTag, GET_PROP_VALUE(StokesTypeTag, PhaseIdx)> stokesVtkWriter(*stokesProblem, *stokesFvGridGeometry, *stokesGridVariables, stokesSol, stokesName); + GET_PROP_TYPE(StokesTypeTag, VtkOutputFields)::init(stokesVtkWriter); + stokesVtkWriter.write(0.0); + + VtkOutputModule<DarcyTypeTag> darcyVtkWriter(*darcyProblem, *darcyFvGridGeometry, *darcyGridVariables, sol[darcyIdx], darcyName); + GET_PROP_TYPE(DarcyTypeTag, VtkOutputFields)::init(darcyVtkWriter); + darcyVtkWriter.write(0.0); + + // the assembler with time loop for instationary problem + using Assembler = MultiDomainFVAssembler<Traits, CouplingManager, DiffMethod::numeric>; + auto assembler = std::make_shared<Assembler>(std::make_tuple(stokesProblem, stokesProblem, darcyProblem), + std::make_tuple(stokesFvGridGeometry->cellCenterFVGridGeometryPtr(), + stokesFvGridGeometry->faceFVGridGeometryPtr(), + darcyFvGridGeometry), + std::make_tuple(stokesGridVariables->cellCenterGridVariablesPtr(), + stokesGridVariables->faceGridVariablesPtr(), + darcyGridVariables), + couplingManager, + timeLoop); + + // the linear solver + using LinearSolver = UMFPackBackend; + auto linearSolver = std::make_shared<LinearSolver>(); + + // the primary variable switches used by the sub models + using PriVarSwitchTuple = std::tuple<NoPrimaryVariableSwitch, NoPrimaryVariableSwitch, typename GET_PROP_TYPE(DarcyTypeTag, PrimaryVariableSwitch)>; + + // the non-linear solver + using NewtonSolver = MultiDomainPriVarSwitchNewtonSolver<Assembler, LinearSolver, CouplingManager, PriVarSwitchTuple>; + NewtonSolver nonLinearSolver(assembler, linearSolver, couplingManager); + + // time loop + timeLoop->start(); do + { + // set previous solution for storage evaluations + assembler->setPreviousSolution(solOld); + + // solve the non-linear system with time step control + nonLinearSolver.solve(sol, *timeLoop); + + // make the new solution the old solution + solOld = sol; + + // update the auxiliary free flow solution vector + stokesSol[stokesCellCenterIdx] = sol[stokesCellCenterIdx]; + stokesSol[stokesFaceIdx] = sol[stokesFaceIdx]; + + // TODO: update dynamic wall properties + + // post time step treatment of Darcy problem + darcyProblem->postTimeStep(sol[darcyIdx], *darcyGridVariables, timeLoop->timeStepSize()); + + // advance grid variables to the next time step + stokesGridVariables->advanceTimeStep(); + darcyGridVariables->advanceTimeStep(); + + // advance to the time loop to the next step + timeLoop->advanceTimeStep(); + + // write vtk output + stokesVtkWriter.write(timeLoop->time()); + darcyVtkWriter.write(timeLoop->time()); + + // report statistics of this time step + timeLoop->reportTimeStep(); + + // set new dt as suggested by newton solver + timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize())); + + } while (!timeLoop->finished()); + + timeLoop->finalize(stokesGridView.comm()); + timeLoop->finalize(darcyGridView.comm()); + + //////////////////////////////////////////////////////////// + // finalize, print dumux message to say goodbye + //////////////////////////////////////////////////////////// + + // print dumux end message + if (mpiHelper.rank() == 0) + { + Parameters::print(); + DumuxMessage::print(/*firstCall=*/false); + } + + return 0; +} // end main +catch (Dumux::ParameterException &e) +{ + std::cerr << std::endl << e << " ---> Abort!" << std::endl; + return 1; +} +catch (Dune::DGFException & e) +{ + std::cerr << "DGF exception thrown (" << e << + "). Most likely, the DGF file name is wrong " + "or the DGF file is corrupted, " + "e.g. missing hash at end of file or wrong number (dimensions) of entries." + << " ---> Abort!" << std::endl; + return 2; +} +catch (Dune::Exception &e) +{ + std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl; + return 3; +} +catch (...) +{ + std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl; + return 4; +} diff --git a/exercises/exercise-coupling-ff-pm/turbulence/ex_turbulence_coupling_ff-pm.input b/exercises/exercise-coupling-ff-pm/turbulence/ex_turbulence_coupling_ff-pm.input new file mode 100644 index 0000000000000000000000000000000000000000..514cf156d55211777c2ec0980f37d1a95124867e --- /dev/null +++ b/exercises/exercise-coupling-ff-pm/turbulence/ex_turbulence_coupling_ff-pm.input @@ -0,0 +1,62 @@ +[TimeLoop] +DtInitial = 1e-1 # [s] +MaxTimeStepSize = 43200 # [s] (12 hours) +TEnd = 864000 # [s] (6 days) + +[Stokes.Grid] +Positions0 = 0.0 0.25 +Positions1 = 0.25 0.5 +Grading0 = 1.0 +Grading1 = 1.0 +Cells0 = 15 +Cells1 = 20 +Verbosity = true + +[Darcy.Grid] +Positions0 = 0.0 0.25 +Positions1 = 0.0 0.25 +Cells0 = 15 +Cells1 = 10 +Grading0 = 1.0 +Grading1 = 1.0 +Verbosity = true + +[Stokes.Problem] +Name = stokes +RefVelocity = 3.5 # [m/s] +RefPressure = 1e5 # [Pa] +refMoleFrac = 0 # [-] +RefTemperature = 298.15 # [K] + +[Darcy.Problem] +Name = darcy +Pressure = 1e5 +Saturation = 0.5 # initial Sw +Temperature = 298.15 # [K] +InitPhasePresence = 3 # bothPhases + +[Darcy.SpatialParams] +Porosity = 0.41 +Permeability = 2.65e-10 +AlphaBeaversJoseph = 1.0 +Swr = 0.005 +Snr = 0.01 +VgAlpha = 6.371e-4 +VgN = 6.9 + +[Problem] +Name = ex_coupling_turbulence_ff-pm +EnableGravity = true +InterfaceDiffusionCoefficientAvg = Harmonic + +[Vtk] +AddVelocity = true +WriteFaceData = false + +[Newton] +MaxSteps = 12 +MaxRelativeShift = 1e-5 + +[Assembly] +NumericDifferenceMethod = 0 +NumericDifference.BaseEpsilon = 1e-8 diff --git a/exercises/exercise-coupling-ff-pm/turbulence/ex_turbulence_ffproblem.hh b/exercises/exercise-coupling-ff-pm/turbulence/ex_turbulence_ffproblem.hh new file mode 100644 index 0000000000000000000000000000000000000000..861e86ce9ff366b24376846708bb88fec1a7e4c3 --- /dev/null +++ b/exercises/exercise-coupling-ff-pm/turbulence/ex_turbulence_ffproblem.hh @@ -0,0 +1,378 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 2 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ +/*! + * \file + * \brief The free-flow sub problem + */ +#ifndef DUMUX_FREEFLOW1P2C_SUBPROBLEM_HH +#define DUMUX_FREEFLOW1P2C_SUBPROBLEM_HH + +#include <dune/grid/yaspgrid.hh> + +#include <dumux/material/fluidsystems/1padapter.hh> +#include <dumux/material/fluidsystems/h2oair.hh> +#include <dumux/discretization/staggered/freeflow/properties.hh> + +#include <dumux/freeflow/compositional/navierstokesncmodel.hh> +#include <dumux/freeflow/navierstokes/problem.hh> + +namespace Dumux +{ +template <class TypeTag> +class FreeFlowSubProblem; + +namespace Properties +{ +NEW_TYPE_TAG(ZeroEqTypeTag, INHERITS_FROM(StaggeredFreeFlowModel, NavierStokesNCNI)); + +// Set the grid type +SET_TYPE_PROP(ZeroEqTypeTag, Grid, Dune::YaspGrid<2, Dune::TensorProductCoordinates<typename GET_PROP_TYPE(TypeTag, Scalar), 2> >); + +// The fluid system +SET_PROP(ZeroEqTypeTag, FluidSystem) +{ + using H2OAir = FluidSystems::H2OAir<typename GET_PROP_TYPE(TypeTag, Scalar)>; + static constexpr auto phaseIdx = H2OAir::gasPhaseIdx; // simulate the air phase + using type = FluidSystems::OnePAdapter<H2OAir, phaseIdx>; +}; + +SET_INT_PROP(ZeroEqTypeTag, ReplaceCompEqIdx, 3); + +// Use formulation based on mass fractions +SET_BOOL_PROP(ZeroEqTypeTag, UseMoles, true); + +// Set the problem property +SET_TYPE_PROP(ZeroEqTypeTag, Problem, Dumux::FreeFlowSubProblem<TypeTag> ); + +SET_BOOL_PROP(ZeroEqTypeTag, EnableFVGridGeometryCache, true); +SET_BOOL_PROP(ZeroEqTypeTag, EnableGridFluxVariablesCache, true); +SET_BOOL_PROP(ZeroEqTypeTag, EnableGridVolumeVariablesCache, true); + +SET_BOOL_PROP(ZeroEqTypeTag, EnableInertiaTerms, true); +} + +/*! + * \brief The free-flow sub problem + */ +template <class TypeTag> +class FreeFlowSubProblem : public NavierStokesProblem<TypeTag> +{ + using ParentType = NavierStokesProblem<TypeTag>; + + using GridView = typename GET_PROP_TYPE(TypeTag, GridView); + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + using FluidSystem = typename GET_PROP_TYPE(TypeTag, FluidSystem); + using Indices = typename GET_PROP_TYPE(TypeTag, ModelTraits)::Indices; + using BoundaryTypes = typename GET_PROP_TYPE(TypeTag, BoundaryTypes); + + using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); + using FVElementGeometry = typename FVGridGeometry::LocalView; + using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace; + using Element = typename GridView::template Codim<0>::Entity; + using ElementVolumeVariables = typename GET_PROP_TYPE(TypeTag, GridVolumeVariables)::LocalView; + using ElementFaceVariables = typename GET_PROP_TYPE(TypeTag, GridFaceVariables)::LocalView; + using FluidState = typename GET_PROP_TYPE(TypeTag, FluidState); + + using GlobalPosition = typename Element::Geometry::GlobalCoordinate; + + using PrimaryVariables = typename GET_PROP_TYPE(TypeTag, PrimaryVariables); + using NumEqVector = typename GET_PROP_TYPE(TypeTag, NumEqVector); + + using CouplingManager = typename GET_PROP_TYPE(TypeTag, CouplingManager); + using TimeLoopPtr = std::shared_ptr<TimeLoop<Scalar>>; + + using DiffusionCoefficientAveragingType = typename StokesDarcyCouplingOptions::DiffusionCoefficientAveragingType; + + static constexpr bool useMoles = GET_PROP_TYPE(TypeTag, ModelTraits)::useMoles(); + +public: + FreeFlowSubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry, std::shared_ptr<CouplingManager> couplingManager) + : ParentType(fvGridGeometry, "Stokes"), eps_(1e-6), couplingManager_(couplingManager) + { + refVelocity_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.RefVelocity"); + refPressure_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.RefPressure"); + refMoleFrac_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.refMoleFrac"); + refTemperature_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.RefTemperature"); + + diffCoeffAvgType_ = StokesDarcyCouplingOptions::stringToEnum(DiffusionCoefficientAveragingType{}, + getParamFromGroup<std::string>(this->paramGroup(), "Problem.InterfaceDiffusionCoefficientAvg")); + } + + /*! + * \name Problem parameters + */ + // \{ + + /*! + * \brief Return the temperature within the domain in [K]. + */ + Scalar temperature() const + { return refTemperature_; } + + /*! + * \brief Return the sources within the domain. + * + * \param globalPos The global position + */ + NumEqVector sourceAtPos(const GlobalPosition &globalPos) const + { return NumEqVector(0.0); } + + // \} + /*! + * \name Boundary conditions + */ + // \{ + + /*! + * \brief Specifies which kind of boundary condition should be + * used for which equation on a given boundary segment. + * + * \param element The finite element + * \param scvf The sub control volume face + */ + BoundaryTypes boundaryTypes(const Element& element, + const SubControlVolumeFace& scvf) const + { + BoundaryTypes values; + + const auto& globalPos = scvf.center(); + + if (onLeftBoundary_(globalPos)) + { + values.setDirichlet(Indices::velocityXIdx); + values.setDirichlet(Indices::velocityYIdx); + values.setDirichlet(Indices::conti0EqIdx + 1); + values.setDirichlet(Indices::energyBalanceIdx); + } + + if (onLowerBoundary_(globalPos)) + { + values.setDirichlet(Indices::velocityXIdx); + values.setDirichlet(Indices::velocityYIdx); + values.setNeumann(Indices::conti0EqIdx); + values.setNeumann(Indices::conti0EqIdx + 1); + values.setNeumann(Indices::energyBalanceIdx); + } + + if (onUpperBoundary_(globalPos)) + { + values.setDirichlet(Indices::velocityXIdx); + values.setDirichlet(Indices::velocityYIdx); + values.setNeumann(Indices::conti0EqIdx); + values.setNeumann(Indices::conti0EqIdx + 1); + values.setNeumann(Indices::energyBalanceIdx); + } + + if (onRightBoundary_(globalPos)) + { + values.setDirichlet(Indices::pressureIdx); + values.setOutflow(Indices::conti0EqIdx + 1); + values.setOutflow(Indices::energyBalanceIdx); + } + + if (couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf)) + { + values.setCouplingNeumann(Indices::conti0EqIdx); + values.setCouplingNeumann(Indices::conti0EqIdx + 1); + values.setCouplingNeumann(Indices::energyBalanceIdx); + values.setCouplingNeumann(Indices::momentumYBalanceIdx); + values.setBJS(Indices::momentumXBalanceIdx); + } + return values; + } + + /*! + * \brief Evaluate the boundary conditions for a Dirichlet control volume. + * + * \param element The element + * \param scvf The subcontrolvolume face + */ + PrimaryVariables dirichletAtPos(const GlobalPosition& pos) const + { + PrimaryVariables values(0.0); + values = initialAtPos(pos); + + return values; + } + + /*! + * \brief Evaluate the boundary conditions for a Neumann control volume. + * + * \param element The element for which the Neumann boundary condition is set + * \param fvGeomentry The fvGeometry + * \param elemVolVars The element volume variables + * \param elemFaceVars The element face variables + * \param scvf The boundary sub control volume face + */ + NumEqVector neumann(const Element& element, + const FVElementGeometry& fvGeometry, + const ElementVolumeVariables& elemVolVars, + const ElementFaceVariables& elemFaceVars, + const SubControlVolumeFace& scvf) const + { + PrimaryVariables values(0.0); + if(couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf)) + { + values[Indices::momentumYBalanceIdx] = couplingManager().couplingData().momentumCouplingCondition(fvGeometry, elemVolVars, elemFaceVars, scvf); + + const auto massFlux = couplingManager().couplingData().massCouplingCondition(fvGeometry, elemVolVars, elemFaceVars, scvf, diffCoeffAvgType_); + values[Indices::conti0EqIdx] = massFlux[0]; + values[Indices::conti0EqIdx + 1] = massFlux[1]; + values[Indices::energyBalanceIdx] = couplingManager().couplingData().energyCouplingCondition(fvGeometry, elemVolVars, elemFaceVars, scvf, diffCoeffAvgType_); + } + return values; + } + + // \} + + /*! + * \brief Set the coupling manager + */ + void setCouplingManager(std::shared_ptr<CouplingManager> cm) + { couplingManager_ = cm; } + + /*! + * \brief Get the coupling manager + */ + const CouplingManager& couplingManager() const + { return *couplingManager_; } + + /*! + * \name Volume terms + */ + // \{ + + /*! + * \brief Evaluate the initial value for a control volume. + * + * \param globalPos The global position + */ + PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const + { + FluidState fluidState; + updateFluidStateForBC_(fluidState, refTemperature(), refPressure(), refMoleFrac()); + + const Scalar density = FluidSystem::density(fluidState, 0); + + PrimaryVariables values(0.0); + values[Indices::pressureIdx] = refPressure() + density*this->gravity()[1]*(globalPos[1] - this->fvGridGeometry().bBoxMin()[1]); + values[Indices::conti0EqIdx + 1] = refMoleFrac(); + values[Indices::velocityXIdx] = refVelocity(); + values[Indices::temperatureIdx] = refTemperature(); + + if(onUpperBoundary_(globalPos)) + values[Indices::velocityXIdx] = 0.0; + + return values; + } + + //! \brief Returns the reference velocity. + const Scalar refVelocity() const + { return refVelocity_ ;} + + //! \brief Returns the reference pressure. + const Scalar refPressure() const + { return refPressure_; } + + //! \brief Returns the reference mass fraction. + const Scalar refMoleFrac() const + { return refMoleFrac_; } + + //! \brief Returns the reference temperature. + const Scalar refTemperature() const + { return refTemperature_; } + + + void setTimeLoop(TimeLoopPtr timeLoop) + { timeLoop_ = timeLoop; } + + /*! + * \brief Returns the intrinsic permeability of required as input parameter for the Beavers-Joseph-Saffman boundary condition + */ + Scalar permeability(const SubControlVolumeFace& scvf) const + { + return couplingManager().couplingData().darcyPermeability(scvf); + } + + /*! + * \brief Returns the alpha value required as input parameter for the Beavers-Joseph-Saffman boundary condition + */ + Scalar alphaBJ(const SubControlVolumeFace& scvf) const + { + return couplingManager().problem(CouplingManager::darcyIdx).spatialParams().beaversJosephCoeffAtPos(scvf.center()); + } + + // \} + +private: + bool onLeftBoundary_(const GlobalPosition &globalPos) const + { return globalPos[0] < this->fvGridGeometry().bBoxMin()[0] + eps_; } + + bool onRightBoundary_(const GlobalPosition &globalPos) const + { return globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_; } + + bool onLowerBoundary_(const GlobalPosition &globalPos) const + { return globalPos[1] < this->fvGridGeometry().bBoxMin()[1] + eps_; } + + bool onUpperBoundary_(const GlobalPosition &globalPos) const + { return globalPos[1] > this->fvGridGeometry().bBoxMax()[1] - eps_; } + + //! \brief updates the fluid state to obtain required quantities for IC/BC + void updateFluidStateForBC_(FluidState& fluidState, const Scalar temperature, + const Scalar pressure, const Scalar moleFraction) const + { + fluidState.setTemperature(temperature); + fluidState.setPressure(0, pressure); + fluidState.setSaturation(0, 1.0); + fluidState.setMoleFraction(0, 1, moleFraction); + fluidState.setMoleFraction(0, 0, 1.0 - moleFraction); + + typename FluidSystem::ParameterCache paramCache; + paramCache.updatePhase(fluidState, 0); + + const Scalar density = FluidSystem::density(fluidState, paramCache, 0); + fluidState.setDensity(0, density); + + const Scalar molarDensity = FluidSystem::molarDensity(fluidState, paramCache, 0); + fluidState.setMolarDensity(0, molarDensity); + + const Scalar enthalpy = FluidSystem::enthalpy(fluidState, paramCache, 0); + fluidState.setEnthalpy(0, enthalpy); + } + + // the height of the free-flow domain + const Scalar height_() const + { return this->fvGridGeometry().bBoxMax()[1] - this->fvGridGeometry().bBoxMin()[1]; } + + Scalar eps_; + + Scalar refVelocity_; + Scalar refPressure_; + Scalar refMoleFrac_; + Scalar refTemperature_; + + TimeLoopPtr timeLoop_; + + std::shared_ptr<CouplingManager> couplingManager_; + + DiffusionCoefficientAveragingType diffCoeffAvgType_; +}; +} //end namespace + +#endif // DUMUX_STOKES1P2C_SUBPROBLEM_HH diff --git a/exercises/exercise-coupling-ff-pm/turbulence/ex_turbulence_pmproblem.hh b/exercises/exercise-coupling-ff-pm/turbulence/ex_turbulence_pmproblem.hh new file mode 100644 index 0000000000000000000000000000000000000000..2d3a84d25c4884441720cc2ad10b0ccb8ab7a4ab --- /dev/null +++ b/exercises/exercise-coupling-ff-pm/turbulence/ex_turbulence_pmproblem.hh @@ -0,0 +1,324 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 2 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ + /*! + * \file + * + * \brief The porous medium sub problem + */ +#ifndef DUMUX_DARCY2P2C_SUBPROBLEM_HH +#define DUMUX_DARCY2P2C_SUBPROBLEM_HH + +#include <dune/grid/yaspgrid.hh> + +#include <dumux/discretization/cellcentered/tpfa/properties.hh> + +#include <dumux/porousmediumflow/2p2c/model.hh> +#include <dumux/porousmediumflow/problem.hh> + +#include <dumux/material/fluidsystems/h2oair.hh> + +#include "../2pspatialparams.hh" + +namespace Dumux +{ +template <class TypeTag> +class DarcySubProblem; + +namespace Properties +{ +NEW_TYPE_TAG(DarcyTwoPTwoCTypeTag, INHERITS_FROM(CCTpfaModel, TwoPTwoCNI)); + +// Set the problem property +SET_TYPE_PROP(DarcyTwoPTwoCTypeTag, Problem, Dumux::DarcySubProblem<TypeTag>); + +// the fluid system +SET_TYPE_PROP(DarcyTwoPTwoCTypeTag, FluidSystem, FluidSystems::H2OAir<typename GET_PROP_TYPE(TypeTag, Scalar)>); + +//! Set the default formulation to pw-Sn: This can be over written in the problem. +SET_PROP(DarcyTwoPTwoCTypeTag, Formulation) +{ static constexpr auto value = TwoPFormulation::p1s0; }; + +// The gas component balance (air) is replaced by the total mass balance +SET_INT_PROP(DarcyTwoPTwoCTypeTag, ReplaceCompEqIdx, 3); + +// Set the grid type +SET_TYPE_PROP(DarcyTwoPTwoCTypeTag, Grid, Dune::YaspGrid<2, Dune::TensorProductCoordinates<typename GET_PROP_TYPE(TypeTag, Scalar), 2> >); + +SET_BOOL_PROP(DarcyTwoPTwoCTypeTag, UseMoles, true); + +SET_TYPE_PROP(DarcyTwoPTwoCTypeTag, SpatialParams, TwoPSpatialParams<TypeTag>); +} + +/*! + * \brief The porous medium sub problem + */ +template <class TypeTag> +class DarcySubProblem : public PorousMediumFlowProblem<TypeTag> +{ + using ParentType = PorousMediumFlowProblem<TypeTag>; + using GridView = typename GET_PROP_TYPE(TypeTag, GridView); + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + using PrimaryVariables = typename GET_PROP_TYPE(TypeTag, PrimaryVariables); + using NumEqVector = typename GET_PROP_TYPE(TypeTag, NumEqVector); + using BoundaryTypes = typename GET_PROP_TYPE(TypeTag, BoundaryTypes); + using VolumeVariables = typename GET_PROP_TYPE(TypeTag, VolumeVariables); + using FVElementGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry)::LocalView; + using SubControlVolume = typename FVElementGeometry::SubControlVolume; + using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace; + using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); + using ElementVolumeVariables = typename GET_PROP_TYPE(TypeTag, GridVolumeVariables)::LocalView; + + using FluidSystem = typename GET_PROP_TYPE(TypeTag, FluidSystem); + + // copy some indices for convenience + using Indices = typename GET_PROP_TYPE(TypeTag, ModelTraits)::Indices; + enum { + // primary variable indices + conti0EqIdx = Indices::conti0EqIdx, + contiWEqIdx = Indices::conti0EqIdx + FluidSystem::H2OIdx, + contiNEqIdx = Indices::conti0EqIdx + FluidSystem::AirIdx, + pressureIdx = Indices::pressureIdx, + switchIdx = Indices::switchIdx + }; + + using Element = typename GridView::template Codim<0>::Entity; + using GlobalPosition = typename Element::Geometry::GlobalCoordinate; + + using CouplingManager = typename GET_PROP_TYPE(TypeTag, CouplingManager); + using TimeLoopPtr = std::shared_ptr<TimeLoop<Scalar>>; + + using DiffusionCoefficientAveragingType = typename StokesDarcyCouplingOptions::DiffusionCoefficientAveragingType; + +public: + DarcySubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry, + std::shared_ptr<CouplingManager> couplingManager) + : ParentType(fvGridGeometry, "Darcy"), eps_(1e-7), couplingManager_(couplingManager) + { + pressure_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.Pressure"); + initialSw_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.Saturation"); + temperature_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.Temperature"); + initialPhasePresence_ = getParamFromGroup<int>(this->paramGroup(), "Problem.InitPhasePresence"); + + diffCoeffAvgType_ = StokesDarcyCouplingOptions::stringToEnum(DiffusionCoefficientAveragingType{}, + getParamFromGroup<std::string>(this->paramGroup(), "Problem.InterfaceDiffusionCoefficientAvg")); + } + + /*! + * \name Simulation steering + */ + // \{ + + template<class SolutionVector, class GridVariables> + void postTimeStep(const SolutionVector& curSol, + const GridVariables& gridVariables, + const Scalar timeStepSize) + + { + // compute the mass in the entire domain + Scalar massWater = 0.0; + + // bulk elements + for (const auto& element : elements(this->fvGridGeometry().gridView())) + { + auto fvGeometry = localView(this->fvGridGeometry()); + fvGeometry.bindElement(element); + + auto elemVolVars = localView(gridVariables.curGridVolVars()); + elemVolVars.bindElement(element, fvGeometry, curSol); + + for (auto&& scv : scvs(fvGeometry)) + { + const auto& volVars = elemVolVars[scv]; + for(int phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) + { + massWater += volVars.massFraction(phaseIdx, FluidSystem::H2OIdx)*volVars.density(phaseIdx) + * scv.volume() * volVars.saturation(phaseIdx) * volVars.porosity() * volVars.extrusionFactor(); + } + } + } + + std::cout << "mass of water is: " << massWater << std::endl; + } + + /*! + * \brief Return the temperature within the domain in [K]. + */ + Scalar temperature() const + { return temperature_; } + // \} + + /*! + * \name Boundary conditions + */ + // \{ + /*! + * \brief Specifies which kind of boundary condition should be + * used for which equation on a given boundary control volume. + * + * \param element The element + * \param scvf The boundary sub control volume face + */ + BoundaryTypes boundaryTypes(const Element &element, const SubControlVolumeFace &scvf) const + { + BoundaryTypes values; + values.setAllNeumann(); + + if (couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf)) + values.setAllCouplingNeumann(); + + return values; + } + + /*! + * \brief Evaluate the boundary conditions for a Dirichlet control volume. + * + * \param element The element for which the Dirichlet boundary condition is set + * \param scvf The boundary subcontrolvolumeface + * + * For this method, the \a values parameter stores primary variables. + */ + PrimaryVariables dirichlet(const Element &element, const SubControlVolumeFace &scvf) const + { + PrimaryVariables values(0.0); + values = initialAtPos(scvf.center()); + + return values; + } + + /*! + * \brief Evaluate the boundary conditions for a Neumann + * control volume. + * + * \param element The element for which the Neumann boundary condition is set + * \param fvGeomentry The fvGeometry + * \param elemVolVars The element volume variables + * \param scvf The boundary sub control volume face + * + */ + NumEqVector neumann(const Element& element, + const FVElementGeometry& fvGeometry, + const ElementVolumeVariables& elemVolVars, + const SubControlVolumeFace& scvf) const + { + NumEqVector values(0.0); + + if (couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf)) + { + const auto massFlux = couplingManager().couplingData().massCouplingCondition(fvGeometry, elemVolVars, scvf, diffCoeffAvgType_); + + for(int i = 0; i< massFlux.size(); ++i) + values[i] = massFlux[i]; + + values[Indices::energyEqIdx] = couplingManager().couplingData().energyCouplingCondition(fvGeometry, elemVolVars, scvf, diffCoeffAvgType_); + } + + return values; + } + + // \} + + /*! + * \name Volume terms + */ + // \{ + /*! + * \brief Evaluate the source term for all phases within a given + * sub-control-volume. + * + * \param element The element for which the source term is set + * \param fvGeomentry The fvGeometry + * \param elemVolVars The element volume variables + * \param scv The subcontrolvolume + * + * For this method, the \a values variable stores the rate mass + * of a component is generated or annihilate per volume + * unit. Positive values mean that mass is created, negative ones + * mean that it vanishes. + */ + NumEqVector source(const Element &element, + const FVElementGeometry& fvGeometry, + const ElementVolumeVariables& elemVolVars, + const SubControlVolume &scv) const + { return NumEqVector(0.0); } + + // \} + + /*! + * \brief Evaluate the initial value for a control volume. + * + * For this method, the \a priVars parameter stores primary + * variables. + */ + PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const + { + PrimaryVariables values(0.0); + values.setState(initialPhasePresence_); + + values[pressureIdx] = pressure_ + 1. * this->gravity()[1] * (globalPos[1] - this->fvGridGeometry().bBoxMax()[1]); + values[switchIdx] = initialSw_; + values[Indices::temperatureIdx] = temperature_; + + return values; + } + + // \} + + /*! + * \brief Set the coupling manager + */ + void setCouplingManager(std::shared_ptr<CouplingManager> cm) + { couplingManager_ = cm; } + + /*! + * \brief Get the coupling manager + */ + const CouplingManager& couplingManager() const + { return *couplingManager_; } + + void setTimeLoop(TimeLoopPtr timeLoop) + { timeLoop_ = timeLoop; } + +private: + bool onLeftBoundary_(const GlobalPosition &globalPos) const + { return globalPos[0] < this->fvGridGeometry().bBoxMin()[0] + eps_; } + + bool onRightBoundary_(const GlobalPosition &globalPos) const + { return globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_; } + + bool onLowerBoundary_(const GlobalPosition &globalPos) const + { return globalPos[1] < this->fvGridGeometry().bBoxMin()[1] + eps_; } + + bool onUpperBoundary_(const GlobalPosition &globalPos) const + { return globalPos[1] > this->fvGridGeometry().bBoxMax()[1] - eps_; } + + Scalar pressure_; + Scalar initialSw_; + Scalar temperature_; + int initialPhasePresence_; + + TimeLoopPtr timeLoop_; + + Scalar eps_; + + std::shared_ptr<CouplingManager> couplingManager_; + DiffusionCoefficientAveragingType diffCoeffAvgType_; +}; +} //end namespace + +#endif //DUMUX_DARCY2P2C_SUBPROBLEM_HH diff --git a/exercises/extradoc/ex_ff-pm-turb_viscosity.png b/exercises/extradoc/ex_ff-pm-turb_viscosity.png new file mode 100644 index 0000000000000000000000000000000000000000..1e7ddab16db7d8a718490ffbf5c2a57ddb3aeacf Binary files /dev/null and b/exercises/extradoc/ex_ff-pm-turb_viscosity.png differ diff --git a/exercises/extradoc/ex_ff-pm-vertical-flow.png b/exercises/extradoc/ex_ff-pm-vertical-flow.png new file mode 100644 index 0000000000000000000000000000000000000000..2c771210ad0f7d1c2d37a6f077642a32925483b4 Binary files /dev/null and b/exercises/extradoc/ex_ff-pm-vertical-flow.png differ diff --git a/exercises/extradoc/ex_ff-pm-wave-interface.png b/exercises/extradoc/ex_ff-pm-wave-interface.png new file mode 100644 index 0000000000000000000000000000000000000000..15c3a01caebfdd30885afd462f9eff4313436bd5 Binary files /dev/null and b/exercises/extradoc/ex_ff-pm-wave-interface.png differ diff --git a/exercises/solution/CMakeLists.txt b/exercises/solution/CMakeLists.txt index 50ac3c623f92d870c3ae0bafb54df8d4b3863476..b55b7ace7f2cd022db71b2769f2548e5bb55136f 100644 --- a/exercises/solution/CMakeLists.txt +++ b/exercises/solution/CMakeLists.txt @@ -1,4 +1,5 @@ add_subdirectory(exercise-basic) +add_subdirectory(exercise-coupling-ff-pm) add_subdirectory(exercise-fluidsystem) add_subdirectory(exercise-grids) add_subdirectory(exercise-mainfile) diff --git a/exercises/solution/exercise-coupling-ff-pm/1pspatialparams.hh b/exercises/solution/exercise-coupling-ff-pm/1pspatialparams.hh new file mode 100644 index 0000000000000000000000000000000000000000..64887e33307e8a45908dabc131e919a99f95dfa1 --- /dev/null +++ b/exercises/solution/exercise-coupling-ff-pm/1pspatialparams.hh @@ -0,0 +1,98 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 2 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ +/*! + * \file + * \ingroup OnePTests + * \brief The spatial parameters class for the test problem using the 1p cc model + */ +#ifndef DUMUX_1P_TEST_SPATIALPARAMS_HH +#define DUMUX_1P_TEST_SPATIALPARAMS_HH + +#include <dumux/material/spatialparams/fv1p.hh> + +namespace Dumux +{ + +/*! + * \ingroup OnePModel + * \ingroup ImplicitTestProblems + * + * \brief The spatial parameters class for the test problem using the + * 1p cc model + */ +template<class TypeTag> +class OnePSpatialParams +: public FVSpatialParamsOneP<typename GET_PROP_TYPE(TypeTag, FVGridGeometry), + typename GET_PROP_TYPE(TypeTag, Scalar), + OnePSpatialParams<TypeTag>> +{ + using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + using Problem = typename GET_PROP_TYPE(TypeTag, Problem); + using GridView = typename GET_PROP_TYPE(TypeTag, GridView); + using ParentType = FVSpatialParamsOneP<FVGridGeometry, Scalar, OnePSpatialParams<TypeTag>>; + + using Element = typename GridView::template Codim<0>::Entity; + using GlobalPosition = typename Element::Geometry::GlobalCoordinate; + +public: + // export permeability type + using PermeabilityType = Scalar; + + OnePSpatialParams(std::shared_ptr<const FVGridGeometry> fvGridGeometry) + : ParentType(fvGridGeometry) + { + permeability_ = getParam<Scalar>("Darcy.SpatialParams.Permeability"); + porosity_ = getParam<Scalar>("Darcy.SpatialParams.Porosity"); + alphaBJ_ = getParam<Scalar>("Darcy.SpatialParams.AlphaBeaversJoseph"); + } + + /*! + * \brief Function for defining the (intrinsic) permeability \f$[m^2]\f$. + * + * \param globalPos The global position + * \return the intrinsic permeability + */ + PermeabilityType permeabilityAtPos(const GlobalPosition& globalPos) const + { return permeability_; } + + /*! \brief Define the porosity in [-]. + * + * \param globalPos The global position + */ + Scalar porosityAtPos(const GlobalPosition& globalPos) const + { return porosity_; } + + /*! \brief Define the Beavers-Joseph coefficient in [-]. + * + * \param globalPos The global position + */ + Scalar beaversJosephCoeffAtPos(const GlobalPosition& globalPos) const + { return alphaBJ_; } + + +private: + Scalar permeability_; + Scalar porosity_; + Scalar alphaBJ_; +}; + +} // end namespace + +#endif diff --git a/exercises/solution/exercise-coupling-ff-pm/2pspatialparams.hh b/exercises/solution/exercise-coupling-ff-pm/2pspatialparams.hh new file mode 100644 index 0000000000000000000000000000000000000000..1830f3cbf2381280ca1213b8a07a17890846203c --- /dev/null +++ b/exercises/solution/exercise-coupling-ff-pm/2pspatialparams.hh @@ -0,0 +1,139 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 2 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ +/*! + * \file + * \ingroup TwoPTests + * \brief The spatial parameters class for the test problem using the 2p cc model + */ +#ifndef DUMUX_TWOPHASE_SPATIAL_PARAMS_HH +#define DUMUX_TWOPHASE_SPATIAL_PARAMS_HH + +#include <dumux/material/spatialparams/fv.hh> +#include <dumux/material/fluidmatrixinteractions/2p/efftoabslaw.hh> +#include <dumux/material/fluidmatrixinteractions/2p/regularizedvangenuchten.hh> +#include <dumux/material/fluidmatrixinteractions/2p/thermalconductivitysomerton.hh> + +namespace Dumux +{ + +/*! + * \ingroup TwoPModel + * \ingroup ImplicitTestProblems + * + * \brief The spatial parameters class for the test problem using the 2p cc model + */ +template<class TypeTag> +class TwoPSpatialParams +: public FVSpatialParams<typename GET_PROP_TYPE(TypeTag, FVGridGeometry), + typename GET_PROP_TYPE(TypeTag, Scalar), + TwoPSpatialParams<TypeTag>> +{ + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + using Problem = typename GET_PROP_TYPE(TypeTag, Problem); + using GridView = typename GET_PROP_TYPE(TypeTag, GridView); + using Element = typename GridView::template Codim<0>::Entity; + using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); + using FVElementGeometry = typename FVGridGeometry::LocalView; + using SubControlVolume = typename FVElementGeometry::SubControlVolume; + using ParentType = FVSpatialParams<FVGridGeometry, Scalar, TwoPSpatialParams<TypeTag>>; + + using GlobalPosition = typename Element::Geometry::GlobalCoordinate; + using EffectiveLaw = RegularizedVanGenuchten<Scalar>; + +public: + using MaterialLaw = EffToAbsLaw<EffectiveLaw>; + using MaterialLawParams = typename MaterialLaw::Params; + using PermeabilityType = Scalar; + + TwoPSpatialParams(std::shared_ptr<const FVGridGeometry> fvGridGeometry) + : ParentType(fvGridGeometry) + { + permeability_ = getParam<Scalar>("Darcy.SpatialParams.Permeability"); + porosity_ = getParam<Scalar>("Darcy.SpatialParams.Porosity"); + alphaBJ_ = getParam<Scalar>("Darcy.SpatialParams.AlphaBeaversJoseph"); + + // residual saturations + params_.setSwr(getParam<Scalar>("Darcy.SpatialParams.Swr")); + params_.setSnr(getParam<Scalar>("Darcy.SpatialParams.Snr")); + // parameters for the vanGenuchten law + params_.setVgAlpha(getParam<Scalar>("Darcy.SpatialParams.VgAlpha")); + params_.setVgn(getParam<Scalar>("Darcy.SpatialParams.VgN")); + params_.setPcLowSw(params_.swr()*5.0); + params_.setPcHighSw(1.0-params_.snr()*5.0); + } + + /*! + * \brief Function for defining the (intrinsic) permeability \f$[m^2]\f$. + * + * \param globalPos The global position + * \return the intrinsic permeability + */ + PermeabilityType permeabilityAtPos(const GlobalPosition& globalPos) const + { return permeability_; } + + /*! \brief Define the porosity in [-]. + * + * \param globalPos The global position + */ + Scalar porosityAtPos(const GlobalPosition& globalPos) const + { return porosity_; } + + /*! \brief Define the Beavers-Joseph coefficient in [-]. + * + * \param globalPos The global position + */ + Scalar beaversJosephCoeffAtPos(const GlobalPosition& globalPos) const + { return alphaBJ_; } + + /*! + * \brief Returns the parameter object for the Brooks-Corey material law. + * In this test, we use element-wise distributed material parameters. + * + * \param element The current element + * \param scv The sub-control volume inside the element. + * \param elemSol The solution at the dofs connected to the element. + * \return the material parameters object + */ + template<class ElementSolutionVector> + const MaterialLawParams& materialLawParams(const Element& element, + const SubControlVolume& scv, + const ElementSolutionVector& elemSol) const + { return params_; } + + /*! + * \brief Function for defining which phase is to be considered as the wetting phase. + * + * \return the wetting phase index + * \param globalPos The global position + */ + template<class FluidSystem> + int wettingPhaseAtPos(const GlobalPosition& globalPos) const + { return FluidSystem::phase0Idx; } + +private: + Scalar permeability_; + Scalar porosity_; + Scalar alphaBJ_; + MaterialLawParams params_; + static constexpr Scalar eps_ = 1.0e-7; +}; + +} // end namespace + +#endif diff --git a/exercises/solution/exercise-coupling-ff-pm/CMakeLists.txt b/exercises/solution/exercise-coupling-ff-pm/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..bae4c263a6bf7ae6a06d90af66a2e45d224f9b2e --- /dev/null +++ b/exercises/solution/exercise-coupling-ff-pm/CMakeLists.txt @@ -0,0 +1,3 @@ +add_subdirectory(interface) +add_subdirectory(models) +add_subdirectory(turbulence) diff --git a/exercises/solution/exercise-coupling-ff-pm/interface/CMakeLists.txt b/exercises/solution/exercise-coupling-ff-pm/interface/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..24d0d12ed5870a60bd54491d14d04c9993359fc4 --- /dev/null +++ b/exercises/solution/exercise-coupling-ff-pm/interface/CMakeLists.txt @@ -0,0 +1,25 @@ +add_input_file_links() + +dune_add_test(NAME orig_ex_interface_coupling_ff-pm + SOURCES ex_interface_coupling_ff-pm.cc + COMPILE_DEFINITIONS EXNUMBER=0 + CMD_ARGS ex_interface_coupling_ff-pm.input) + +dune_add_test(NAME sol_a_ex_interface_coupling_ff-pm + SOURCES ex_interface_coupling_ff-pm.cc + COMPILE_DEFINITIONS EXNUMBER=1 + CMD_ARGS ex_interface_coupling_ff-pm.input) + +dune_add_test(NAME sol_b_ex_interface_coupling_ff-pm + SOURCES ex_interface_coupling_ff-pm.cc + COMPILE_DEFINITIONS EXNUMBER=2 + CMD_ARGS ex_interface_coupling_ff-pm.input) + +dune_add_test(NAME sol_c_ex_interface_coupling_ff-pm + SOURCES ex_interface_coupling_ff-pm.cc + COMPILE_DEFINITIONS EXNUMBER=3 + CMD_ARGS ex_interface_coupling_ff-pm.input) + + +# add exercise to the common target +add_dependencies(test_exercises sol_a_ex_interface_coupling_ff-pm sol_b_ex_interface_coupling_ff-pm sol_b_ex_interface_coupling_ff-pm) diff --git a/exercises/solution/exercise-coupling-ff-pm/interface/ex_interface_coupling_ff-pm.cc b/exercises/solution/exercise-coupling-ff-pm/interface/ex_interface_coupling_ff-pm.cc new file mode 100644 index 0000000000000000000000000000000000000000..116ed7e2d8e4469f44bde197b8b71974422264b1 --- /dev/null +++ b/exercises/solution/exercise-coupling-ff-pm/interface/ex_interface_coupling_ff-pm.cc @@ -0,0 +1,274 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 2 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ +/*! + * \file + * + * \brief A test problem for the coupled Stokes/Darcy problem (1p) + */ +#include <config.h> + +#include <iostream> + +#include <dune/common/parallel/mpihelper.hh> +#include <dune/istl/io.hh> + +#include <dumux/common/properties.hh> +#include <dumux/common/parameters.hh> +#include <dumux/common/dumuxmessage.hh> +#include <dumux/linear/seqsolverbackend.hh> +#include <dumux/assembly/fvassembler.hh> +#include <dumux/assembly/diffmethod.hh> +#include <dumux/discretization/methods.hh> +#include <dumux/io/vtkoutputmodule.hh> +#include <dumux/io/staggeredvtkoutputmodule.hh> +#include <dumux/io/grid/gridmanager.hh> + +#include <dumux/multidomain/staggeredtraits.hh> +#include <dumux/multidomain/fvassembler.hh> +#include <dumux/multidomain/newtonsolver.hh> + +#include <dumux/multidomain/boundary/stokesdarcy/couplingmanager.hh> + +#include "ex_interface_pmproblem.hh" +#include "ex_interface_ffproblem.hh" + +namespace Dumux { +namespace Properties { + +SET_PROP(StokesOnePTypeTag, CouplingManager) +{ + using Traits = StaggeredMultiDomainTraits<TypeTag, TypeTag, TTAG(DarcyOnePTypeTag)>; + using type = Dumux::StokesDarcyCouplingManager<Traits>; +}; + +SET_PROP(DarcyOnePTypeTag, CouplingManager) +{ + using Traits = StaggeredMultiDomainTraits<TTAG(StokesOnePTypeTag), TTAG(StokesOnePTypeTag), TypeTag>; + using type = Dumux::StokesDarcyCouplingManager<Traits>; +}; + +} // end namespace Properties +} // end namespace Dumux + +int main(int argc, char** argv) try +{ + using namespace Dumux; + + // initialize MPI, finalize is done automatically on exit + const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv); + + // print dumux start message + if (mpiHelper.rank() == 0) + DumuxMessage::print(/*firstCall=*/true); + + // parse command line arguments and input file + Parameters::init(argc, argv); + + // Define the sub problem type tags + using StokesTypeTag = TTAG(StokesOnePTypeTag); + using DarcyTypeTag = TTAG(DarcyOnePTypeTag); + +#if EXNUMBER < 3 + // try to create a grid (from the given grid file or the input file) + // for both sub-domains + using DarcyGridManager = Dumux::GridManager<typename GET_PROP_TYPE(DarcyTypeTag, Grid)>; + DarcyGridManager darcyGridManager; + darcyGridManager.init("Darcy"); // pass parameter group + + using StokesGridManager = Dumux::GridManager<typename GET_PROP_TYPE(StokesTypeTag, Grid)>; + StokesGridManager stokesGridManager; + stokesGridManager.init("Stokes"); // pass parameter group + + // we compute on the leaf grid view + const auto& darcyGridView = darcyGridManager.grid().leafGridView(); + const auto& stokesGridView = stokesGridManager.grid().leafGridView(); +#else + // use dune-subgrid to create the individual grids + static constexpr int dim = 2; + using HostGrid = Dune::YaspGrid<2, Dune::TensorProductCoordinates<double, dim> >; + using HostGridManager = Dumux::GridManager<HostGrid>; + HostGridManager hostGridManager; + hostGridManager.init(); + auto& hostGrid = hostGridManager.grid(); + + struct Params + { + double amplitude = getParam<double>("Grid.Amplitude"); + double baseline = getParam<double>("Grid.Baseline"); + double offset = getParam<double>("Grid.Offset"); + double scaling = getParam<double>("Grid.Scaling"); + }; + + Params params; + + auto elementSelectorStokes = [&](const auto& element) + { + double interface = params.amplitude * std::sin(( element.geometry().center()[0] -params.offset) / params.scaling * 2.0 * M_PI) + params.baseline; + return element.geometry().center()[1] > interface; + }; + + auto elementSelectorDarcy = [&](const auto& element) + { + double interface = params.amplitude * std::sin(( element.geometry().center()[0] - params.offset) / params.scaling * 2.0 * M_PI) + params.baseline; + return element.geometry().center()[1] < interface; + }; + + // subgrid Pointer + auto stokesGridPtr = SubgridGridCreator<HostGrid>::makeGrid(hostGrid, elementSelectorStokes, "Stokes"); + auto darcyGridPtr = SubgridGridCreator<HostGrid>::makeGrid(hostGrid, elementSelectorDarcy, "Darcy"); + + // we compute on the leaf grid view + const auto& darcyGridView = darcyGridPtr->leafGridView(); + const auto& stokesGridView = stokesGridPtr->leafGridView(); + +#endif + + + // create the finite volume grid geometry + using StokesFVGridGeometry = typename GET_PROP_TYPE(StokesTypeTag, FVGridGeometry); + auto stokesFvGridGeometry = std::make_shared<StokesFVGridGeometry>(stokesGridView); + stokesFvGridGeometry->update(); + using DarcyFVGridGeometry = typename GET_PROP_TYPE(DarcyTypeTag, FVGridGeometry); + auto darcyFvGridGeometry = std::make_shared<DarcyFVGridGeometry>(darcyGridView); + darcyFvGridGeometry->update(); + + using Traits = StaggeredMultiDomainTraits<StokesTypeTag, StokesTypeTag, DarcyTypeTag>; + + // the coupling manager + using CouplingManager = StokesDarcyCouplingManager<Traits>; + auto couplingManager = std::make_shared<CouplingManager>(stokesFvGridGeometry, darcyFvGridGeometry); + + // the indices + constexpr auto stokesCellCenterIdx = CouplingManager::stokesCellCenterIdx; + constexpr auto stokesFaceIdx = CouplingManager::stokesFaceIdx; + constexpr auto darcyIdx = CouplingManager::darcyIdx; + + // the problem (initial and boundary conditions) + using StokesProblem = typename GET_PROP_TYPE(StokesTypeTag, Problem); + auto stokesProblem = std::make_shared<StokesProblem>(stokesFvGridGeometry, couplingManager); + using DarcyProblem = typename GET_PROP_TYPE(DarcyTypeTag, Problem); + auto darcyProblem = std::make_shared<DarcyProblem>(darcyFvGridGeometry, couplingManager); + + // the solution vector + Traits::SolutionVector sol; + sol[stokesCellCenterIdx].resize(stokesFvGridGeometry->numCellCenterDofs()); + sol[stokesFaceIdx].resize(stokesFvGridGeometry->numFaceDofs()); + sol[darcyIdx].resize(darcyFvGridGeometry->numDofs()); + + const auto& cellCenterSol = sol[stokesCellCenterIdx]; + const auto& faceSol = sol[stokesFaceIdx]; + + // apply initial solution for instationary problems + typename GET_PROP_TYPE(StokesTypeTag, SolutionVector) stokesSol; + std::get<0>(stokesSol) = cellCenterSol; + std::get<1>(stokesSol) = faceSol; + stokesProblem->applyInitialSolution(stokesSol); + sol[stokesCellCenterIdx] = stokesSol[stokesCellCenterIdx]; + sol[stokesFaceIdx] = stokesSol[stokesFaceIdx]; + + couplingManager->init(stokesProblem, darcyProblem, sol); + + // the grid variables + using StokesGridVariables = typename GET_PROP_TYPE(StokesTypeTag, GridVariables); + auto stokesGridVariables = std::make_shared<StokesGridVariables>(stokesProblem, stokesFvGridGeometry); + stokesGridVariables->init(stokesSol); + using DarcyGridVariables = typename GET_PROP_TYPE(DarcyTypeTag, GridVariables); + auto darcyGridVariables = std::make_shared<DarcyGridVariables>(darcyProblem, darcyFvGridGeometry); + darcyGridVariables->init(sol[darcyIdx]); + + // intialize the vtk output module + const auto stokesName = getParam<std::string>("Problem.Name") + "_" + stokesProblem->name(); + const auto darcyName = getParam<std::string>("Problem.Name") + "_" + darcyProblem->name(); + + StaggeredVtkOutputModule<StokesTypeTag> stokesVtkWriter(*stokesProblem, *stokesFvGridGeometry, *stokesGridVariables, stokesSol, stokesName); + GET_PROP_TYPE(StokesTypeTag, VtkOutputFields)::init(stokesVtkWriter); + +#if EXNUMBER >= 2 + stokesVtkWriter.addField(stokesProblem->getAnalyticalVelocityX(), "analyticalV_x"); +#endif + + stokesVtkWriter.write(0.0); + + VtkOutputModule<DarcyTypeTag> darcyVtkWriter(*darcyProblem, *darcyFvGridGeometry, *darcyGridVariables, sol[darcyIdx], darcyName); + GET_PROP_TYPE(DarcyTypeTag, VtkOutputFields)::init(darcyVtkWriter); + darcyVtkWriter.write(0.0); + + // the assembler for a stationary problem + using Assembler = MultiDomainFVAssembler<Traits, CouplingManager, DiffMethod::numeric>; + auto assembler = std::make_shared<Assembler>(std::make_tuple(stokesProblem, stokesProblem, darcyProblem), + std::make_tuple(stokesFvGridGeometry->cellCenterFVGridGeometryPtr(), + stokesFvGridGeometry->faceFVGridGeometryPtr(), + darcyFvGridGeometry), + std::make_tuple(stokesGridVariables->cellCenterGridVariablesPtr(), + stokesGridVariables->faceGridVariablesPtr(), + darcyGridVariables), + couplingManager); + + // the linear solver + using LinearSolver = UMFPackBackend; + auto linearSolver = std::make_shared<LinearSolver>(); + + // the non-linear solver + using NewtonSolver = MultiDomainNewtonSolver<Assembler, LinearSolver, CouplingManager>; + NewtonSolver nonLinearSolver(assembler, linearSolver, couplingManager); + + // solve the non-linear system + nonLinearSolver.solve(sol); + + // write vtk output + stokesVtkWriter.write(1.0); + darcyVtkWriter.write(1.0); + + //////////////////////////////////////////////////////////// + // finalize, print dumux message to say goodbye + //////////////////////////////////////////////////////////// + + // print dumux end message + if (mpiHelper.rank() == 0) + { + Parameters::print(); + DumuxMessage::print(/*firstCall=*/false); + } + + return 0; +} // end main +catch (Dumux::ParameterException &e) +{ + std::cerr << std::endl << e << " ---> Abort!" << std::endl; + return 1; +} +catch (Dune::DGFException & e) +{ + std::cerr << "DGF exception thrown (" << e << + "). Most likely, the DGF file name is wrong " + "or the DGF file is corrupted, " + "e.g. missing hash at end of file or wrong number (dimensions) of entries." + << " ---> Abort!" << std::endl; + return 2; +} +catch (Dune::Exception &e) +{ + std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl; + return 3; +} +catch (...) +{ + std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl; + return 4; +} diff --git a/exercises/solution/exercise-coupling-ff-pm/interface/ex_interface_coupling_ff-pm.input b/exercises/solution/exercise-coupling-ff-pm/interface/ex_interface_coupling_ff-pm.input new file mode 100644 index 0000000000000000000000000000000000000000..e3813950725ba4837e96b79d76dc9ccc74dc0d4f --- /dev/null +++ b/exercises/solution/exercise-coupling-ff-pm/interface/ex_interface_coupling_ff-pm.input @@ -0,0 +1,45 @@ + # for dune-subgrid + [Grid] +Positions0 = 0 1 +Positions1 = 0 0.2 0.3 0.65 +Cells0 = 100 +Cells1 = 10 50 18 +Baseline = 0.25 # [m] +Amplitude = 0.04 # [m] +Offset = 0.5 # [m] +Scaling = 0.2 #[m] + +[Stokes.Grid] +Verbosity = true +Positions0 = 0.0 1.0 +Positions1 = 1.0 2.0 +Cells0 = 20 +Cells1 = 100 +Grading1 = 1 + +[Darcy.Grid] +Verbosity = true +Positions0 = 0.0 1.0 +Positions1 = 0.0 1.0 +Cells0 = 20 +Cells1 = 20 +Grading1 = 1 + +[Stokes.Problem] +Name = stokes +PressureDifference = 1e-9 + +[Darcy.Problem] +Name = darcy + +[Darcy.SpatialParams] +Permeability = 1e-6 # m^2 +Porosity = 0.4 +AlphaBeaversJoseph = 1.0 + +[Problem] +Name = ex_ff-pm-interface +EnableGravity = false + +[Vtk] +AddVelocity = 1 diff --git a/exercises/solution/exercise-coupling-ff-pm/interface/ex_interface_ffproblem.hh b/exercises/solution/exercise-coupling-ff-pm/interface/ex_interface_ffproblem.hh new file mode 100644 index 0000000000000000000000000000000000000000..369a7bd2b9238272a36759a1856d4f7369f55a37 --- /dev/null +++ b/exercises/solution/exercise-coupling-ff-pm/interface/ex_interface_ffproblem.hh @@ -0,0 +1,360 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 2 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ +/*! + * \file + * \brief The free flow sub problem + */ +#ifndef DUMUX_STOKES_SUBPROBLEM_HH +#define DUMUX_STOKES_SUBPROBLEM_HH + +#include <dune/grid/yaspgrid.hh> + +#if EXNUMBER >= 3 +#include <dumux/io/grid/subgridgridcreator.hh> +#endif + +#include <dumux/material/fluidsystems/1pliquid.hh> +#include <dumux/material/components/simpleh2o.hh> + +#include <dumux/freeflow/navierstokes/problem.hh> +#include <dumux/discretization/staggered/freeflow/properties.hh> +#include <dumux/freeflow/navierstokes/model.hh> + +namespace Dumux +{ +template <class TypeTag> +class StokesSubProblem; + +namespace Properties +{ +NEW_TYPE_TAG(StokesOnePTypeTag, INHERITS_FROM(StaggeredFreeFlowModel, NavierStokes)); + +// the fluid system +SET_PROP(StokesOnePTypeTag, FluidSystem) +{ + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + using type = FluidSystems::OnePLiquid<Scalar, Dumux::Components::SimpleH2O<Scalar> > ; +}; + +// Set the grid type +SET_PROP(StokesOnePTypeTag, Grid) +{ + static constexpr auto dim = 2; + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + using TensorGrid = Dune::YaspGrid<2, Dune::TensorProductCoordinates<Scalar, dim> >; + +#if EXNUMBER < 3 // use "normal" grid + using type = TensorGrid; +#else // use dune-subgrid + using HostGrid = TensorGrid; + using type = Dune::SubGrid<dim, HostGrid>; +#endif +}; + +// Set the problem property +SET_TYPE_PROP(StokesOnePTypeTag, Problem, Dumux::StokesSubProblem<TypeTag> ); + +SET_BOOL_PROP(StokesOnePTypeTag, EnableFVGridGeometryCache, true); +SET_BOOL_PROP(StokesOnePTypeTag, EnableGridFluxVariablesCache, true); +SET_BOOL_PROP(StokesOnePTypeTag, EnableGridVolumeVariablesCache, true); + +SET_BOOL_PROP(StokesOnePTypeTag, EnableInertiaTerms, false); +} + +/*! + * \brief The free flow sub problem + */ +template <class TypeTag> +class StokesSubProblem : public NavierStokesProblem<TypeTag> +{ + using ParentType = NavierStokesProblem<TypeTag>; + + using GridView = typename GET_PROP_TYPE(TypeTag, GridView); + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + + using Indices = typename GET_PROP_TYPE(TypeTag, ModelTraits)::Indices; + + using BoundaryTypes = typename GET_PROP_TYPE(TypeTag, BoundaryTypes); + + using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); + using FVElementGeometry = typename FVGridGeometry::LocalView; + using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace; + using Element = typename GridView::template Codim<0>::Entity; + + using GlobalPosition = typename Element::Geometry::GlobalCoordinate; + + using PrimaryVariables = typename GET_PROP_TYPE(TypeTag, PrimaryVariables); + using NumEqVector = typename GET_PROP_TYPE(TypeTag, NumEqVector); + using FluidSystem = typename GET_PROP_TYPE(TypeTag, FluidSystem); + + using CouplingManager = typename GET_PROP_TYPE(TypeTag, CouplingManager); + +public: + StokesSubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry, std::shared_ptr<CouplingManager> couplingManager) + : ParentType(fvGridGeometry, "Stokes"), eps_(1e-6), couplingManager_(couplingManager) + { + deltaP_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.PressureDifference"); + } + + /*! + * \name Problem parameters + */ + // \{ + + /*! + * \brief Return the temperature within the domain in [K]. + * + * This problem assumes a temperature of 10 degrees Celsius. + */ + Scalar temperature() const + { return 273.15 + 10; } // 10°C + + /*! + * \brief Return the sources within the domain. + * + * \param globalPos The global position + */ + NumEqVector sourceAtPos(const GlobalPosition &globalPos) const + { return NumEqVector(0.0); } + // \} + + /*! + * \name Boundary conditions + */ + // \{ + + /*! + * \brief Specifies which kind of boundary condition should be + * used for which equation on a given boundary segment. + * + * \param element The finite element + * \param scvf The sub control volume face + */ + BoundaryTypes boundaryTypes(const Element& element, + const SubControlVolumeFace& scvf) const + { + BoundaryTypes values; + + const auto& globalPos = scvf.dofPosition(); + +#if EXNUMBER == 0 // flow from top to bottom + if(onUpperBoundary_(globalPos)) + { + values.setDirichlet(Indices::velocityXIdx); + values.setDirichlet(Indices::velocityYIdx); + } + + if (onRightBoundary_(globalPos) || (onLeftBoundary_(globalPos))) + { + values.setDirichlet(Indices::velocityXIdx); + values.setDirichlet(Indices::velocityYIdx); + } +#else // flow flom left to right + if(onLeftBoundary_(globalPos) || onRightBoundary_(globalPos)) + values.setDirichlet(Indices::pressureIdx); + else + { + values.setDirichlet(Indices::velocityXIdx); + values.setDirichlet(Indices::velocityYIdx); + } +#endif + + if(couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf)) + { + values.setCouplingNeumann(Indices::conti0EqIdx); +#if EXNUMBER < 3 + values.setCouplingNeumann(Indices::momentumYBalanceIdx); +#else + //consider orientation of face automatically + values.setCouplingNeumann(scvf.directionIndex()); +#endif + +#if EXNUMBER == 2 + // set the Beaver-Joseph-Saffman slip condition for the tangential momentum balance equation + values.setBJS(Indices::momentumXBalanceIdx); +#endif + +#if EXNUMBER == 3 + // set the Beaver-Joseph-Saffman slip condition for the tangential momentum balance equation, + // consider orientation of face automatically + values.setBJS(1 - scvf.directionIndex()); +#endif + } + + return values; + } + + /*! + * \brief Evaluate the boundary conditions for a Dirichlet control volume. + * + * \param globalPos The global position + */ + PrimaryVariables dirichletAtPos(const GlobalPosition& globalPos) const + { + PrimaryVariables values(0.0); + values = initialAtPos(globalPos); + + return values; + } + + /*! + * \brief Evaluate the boundary conditions for a Neumann control volume. + * + * \param element The element for which the Neumann boundary condition is set + * \param fvGeomentry The fvGeometry + * \param elemVolVars The element volume variables + * \param elemFaceVars The element face variables + * \param scvf The boundary sub control volume face + */ + template<class ElementVolumeVariables, class ElementFaceVariables> + NumEqVector neumann(const Element& element, + const FVElementGeometry& fvGeometry, + const ElementVolumeVariables& elemVolVars, + const ElementFaceVariables& elemFaceVars, + const SubControlVolumeFace& scvf) const + { + NumEqVector values(0.0); + + if(couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf)) + { + values[Indices::conti0EqIdx] = couplingManager().couplingData().massCouplingCondition(fvGeometry, elemVolVars, elemFaceVars, scvf); +#if EXNUMBER < 3 + values[Indices::momentumYBalanceIdx] = couplingManager().couplingData().momentumCouplingCondition(fvGeometry, elemVolVars, elemFaceVars, scvf); +#else + values[scvf.directionIndex()] = couplingManager().couplingData().momentumCouplingCondition(fvGeometry, elemVolVars, elemFaceVars, scvf); +#endif + + } + return values; + } + + // \} + + //! Set the coupling manager + void setCouplingManager(std::shared_ptr<CouplingManager> cm) + { couplingManager_ = cm; } + + //! Get the coupling manager + const CouplingManager& couplingManager() const + { return *couplingManager_; } + + /*! + * \name Volume terms + */ + // \{ + + /*! + * \brief Evaluate the initial value for a control volume. + * + * \param globalPos The global position + */ + PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const + { + PrimaryVariables values(0.0); +#if EXNUMBER == 0 + values[Indices::velocityYIdx] = -1e-6 * globalPos[0] * (this->fvGridGeometry().bBoxMax()[0] - globalPos[0]); +#else + // set fixed pressures on the left and right boundary + if(onLeftBoundary_(globalPos)) + values[Indices::pressureIdx] = deltaP_; + if(onRightBoundary_(globalPos)) + values[Indices::pressureIdx] = 0.0; +#endif + + return values; + } + + /*! + * \brief Returns the intrinsic permeability of required as input parameter for the Beavers-Joseph-Saffman boundary condition + */ + Scalar permeability(const SubControlVolumeFace& scvf) const + { + return couplingManager().couplingData().darcyPermeability(scvf); + } + + /*! + * \brief Returns the alpha value required as input parameter for the Beavers-Joseph-Saffman boundary condition + */ + Scalar alphaBJ(const SubControlVolumeFace& scvf) const + { + return couplingManager().problem(CouplingManager::darcyIdx).spatialParams().beaversJosephCoeffAtPos(scvf.center()); + } + + /*! + * \brief calculate the analytical velocity in x direction based on Beavers & Joseph (1967) + */ + void calculateAnalyticalVelocityX() const + { + analyticalVelocityX_.resize(this->fvGridGeometry().gridView().size(0)); + + using std::sqrt; + const Scalar dPdX = -deltaP_ / (this->fvGridGeometry().bBoxMax()[0] - this->fvGridGeometry().bBoxMin()[0]); + static const Scalar mu = FluidSystem::viscosity(temperature(), 1e5); + static const Scalar alpha = getParam<Scalar>("Darcy.SpatialParams.AlphaBeaversJoseph"); + static const Scalar K = getParam<Scalar>("Darcy.SpatialParams.Permeability"); + static const Scalar sqrtK = sqrt(K); + const Scalar sigma = (this->fvGridGeometry().bBoxMax()[1] - this->fvGridGeometry().bBoxMin()[1])/sqrtK; + + const Scalar uB = -K/(2.0*mu) * ((sigma*sigma + 2.0*alpha*sigma) / (1.0 + alpha*sigma)) * dPdX; + + for (const auto& element : elements(this->fvGridGeometry().gridView())) + { + const auto eIdx = this->fvGridGeometry().gridView().indexSet().index(element); + const Scalar y = element.geometry().center()[1] - this->fvGridGeometry().bBoxMin()[1]; + + const Scalar u = uB*(1.0 + alpha/sqrtK*y) + 1.0/(2.0*mu) * (y*y + 2*alpha*y*sqrtK) * dPdX; + analyticalVelocityX_[eIdx] = u; + } + } + + /*! + * \brief Get the analytical velocity in x direction + */ + const std::vector<Scalar>& getAnalyticalVelocityX() const + { + if(analyticalVelocityX_.empty()) + calculateAnalyticalVelocityX(); + return analyticalVelocityX_; + } + + // \} + +private: + bool onLeftBoundary_(const GlobalPosition &globalPos) const + { return globalPos[0] < this->fvGridGeometry().bBoxMin()[0] + eps_; } + + bool onRightBoundary_(const GlobalPosition &globalPos) const + { return globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_; } + + bool onLowerBoundary_(const GlobalPosition &globalPos) const + { return globalPos[1] < this->fvGridGeometry().bBoxMin()[1] + eps_; } + + bool onUpperBoundary_(const GlobalPosition &globalPos) const + { return globalPos[1] > this->fvGridGeometry().bBoxMax()[1] - eps_; } + + Scalar eps_; + Scalar deltaP_; + + std::shared_ptr<CouplingManager> couplingManager_; + + mutable std::vector<Scalar> analyticalVelocityX_; +}; +} //end namespace + +#endif // DUMUX_STOKES_SUBPROBLEM_HH diff --git a/exercises/solution/exercise-coupling-ff-pm/interface/ex_interface_pmproblem.hh b/exercises/solution/exercise-coupling-ff-pm/interface/ex_interface_pmproblem.hh new file mode 100644 index 0000000000000000000000000000000000000000..7a5c4baaa4cdcc2997ed77781f1ce5308f8718ef --- /dev/null +++ b/exercises/solution/exercise-coupling-ff-pm/interface/ex_interface_pmproblem.hh @@ -0,0 +1,257 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 2 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ +/*! + * \file + * + * \brief The porous medium flow sub problem + */ +#ifndef DUMUX_DARCY_SUBPROBLEM_HH +#define DUMUX_DARCY_SUBPROBLEM_HH + +#include <dune/grid/yaspgrid.hh> + +#if EXNUMBER >= 3 +#include <dumux/io/grid/subgridgridcreator.hh> +#endif + +#include <dumux/discretization/cellcentered/tpfa/properties.hh> + +#include <dumux/porousmediumflow/1p/model.hh> +#include <dumux/porousmediumflow/problem.hh> + +#include "../1pspatialparams.hh" + +#include <dumux/material/components/simpleh2o.hh> +#include <dumux/material/fluidsystems/1pliquid.hh> + +namespace Dumux +{ +template <class TypeTag> +class DarcySubProblem; + +namespace Properties +{ +NEW_TYPE_TAG(DarcyOnePTypeTag, INHERITS_FROM(CCTpfaModel, OneP)); + +// Set the problem property +SET_TYPE_PROP(DarcyOnePTypeTag, Problem, Dumux::DarcySubProblem<TypeTag>); + +// the fluid system +SET_PROP(DarcyOnePTypeTag, FluidSystem) +{ + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + using type = FluidSystems::OnePLiquid<Scalar, Dumux::Components::SimpleH2O<Scalar> > ; +}; + +// Set the grid type +SET_PROP(DarcyOnePTypeTag, Grid) +{ + static constexpr auto dim = 2; + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + using TensorGrid = Dune::YaspGrid<2, Dune::TensorProductCoordinates<Scalar, dim> >; + +#if EXNUMBER < 3 // use "normal" grid + using type = TensorGrid; +#else // use dune-subgrid + using HostGrid = TensorGrid; + using type = Dune::SubGrid<dim, HostGrid>; +#endif +}; + +SET_TYPE_PROP(DarcyOnePTypeTag, SpatialParams, OnePSpatialParams<TypeTag>); +} + +/*! + * \brief The porous medium flow sub problem + */ +template <class TypeTag> +class DarcySubProblem : public PorousMediumFlowProblem<TypeTag> +{ + using ParentType = PorousMediumFlowProblem<TypeTag>; + using GridView = typename GET_PROP_TYPE(TypeTag, GridView); + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + using PrimaryVariables = typename GET_PROP_TYPE(TypeTag, PrimaryVariables); + using NumEqVector = typename GET_PROP_TYPE(TypeTag, NumEqVector); + using BoundaryTypes = typename GET_PROP_TYPE(TypeTag, BoundaryTypes); + using VolumeVariables = typename GET_PROP_TYPE(TypeTag, VolumeVariables); + using FVElementGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry)::LocalView; + using SubControlVolume = typename FVElementGeometry::SubControlVolume; + using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace; + using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); + + using Indices = typename GET_PROP_TYPE(TypeTag, ModelTraits)::Indices; + + using Element = typename GridView::template Codim<0>::Entity; + using GlobalPosition = typename Element::Geometry::GlobalCoordinate; + + using CouplingManager = typename GET_PROP_TYPE(TypeTag, CouplingManager); + +public: + DarcySubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry, + std::shared_ptr<CouplingManager> couplingManager) + : ParentType(fvGridGeometry, "Darcy"), eps_(1e-7), couplingManager_(couplingManager) + {} + + /*! + * \name Simulation steering + */ + // \{ + + /*! + * \brief Return the temperature within the domain in [K]. + * + */ + Scalar temperature() const + { return 273.15 + 10; } // 10°C + // \} + + /*! + * \name Boundary conditions + */ + // \{ + + /*! + * \brief Specifies which kind of boundary condition should be + * used for which equation on a given boundary control volume. + * + * \param element The element + * \param scvf The boundary sub control volume face + */ + BoundaryTypes boundaryTypes(const Element &element, const SubControlVolumeFace &scvf) const + { + BoundaryTypes values; + values.setAllNeumann(); + +#if EXNUMBER == 0 // flow from top to bottom + if (onLowerBoundary_(scvf.center())) + values.setAllDirichlet(); +#endif + + if (couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf)) + values.setAllCouplingNeumann(); + + return values; + } + + /*! + * \brief Evaluate the boundary conditions for a Dirichlet control volume. + * + * \param element The element for which the Dirichlet boundary condition is set + * \param scvf The boundary subcontrolvolumeface + * + * For this method, the \a values parameter stores primary variables. + */ + PrimaryVariables dirichlet(const Element &element, const SubControlVolumeFace &scvf) const + { + PrimaryVariables values(0.0); + values = initial(element); + + return values; + } + + /*! + * \brief Evaluate the boundary conditions for a Neumann control volume. + * + * \param element The element for which the Neumann boundary condition is set + * \param fvGeomentry The fvGeometry + * \param elemVolVars The element volume variables + * \param scvf The boundary sub control volume face + * + * For this method, the \a values variable stores primary variables. + */ + template<class ElementVolumeVariables> + NumEqVector neumann(const Element& element, + const FVElementGeometry& fvGeometry, + const ElementVolumeVariables& elemVolVars, + const SubControlVolumeFace& scvf) const + { + NumEqVector values(0.0); + + if (couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf)) + values[Indices::conti0EqIdx] = couplingManager().couplingData().massCouplingCondition(fvGeometry, elemVolVars, scvf); + + return values; + } + + // \} + + /*! + * \name Volume terms + */ + // \{ + /*! + * \brief Evaluate the source term for all phases within a given + * sub-control-volume. + * + * \param element The element for which the source term is set + * \param fvGeomentry The fvGeometry + * \param elemVolVars The element volume variables + * \param scv The subcontrolvolume + */ + template<class ElementVolumeVariables> + NumEqVector source(const Element &element, + const FVElementGeometry& fvGeometry, + const ElementVolumeVariables& elemVolVars, + const SubControlVolume &scv) const + { return NumEqVector(0.0); } + + // \} + + /*! + * \brief Evaluate the initial value for a control volume. + * + * \param element The element + * + * For this method, the \a priVars parameter stores primary + * variables. + */ + PrimaryVariables initial(const Element &element) const + { + return PrimaryVariables(0.0); + } + + // \} + + //! Set the coupling manager + void setCouplingManager(std::shared_ptr<CouplingManager> cm) + { couplingManager_ = cm; } + + //! Get the coupling manager + const CouplingManager& couplingManager() const + { return *couplingManager_; } + +private: + bool onLeftBoundary_(const GlobalPosition &globalPos) const + { return globalPos[0] < this->fvGridGeometry().bBoxMin()[0] + eps_; } + + bool onRightBoundary_(const GlobalPosition &globalPos) const + { return globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_; } + + bool onLowerBoundary_(const GlobalPosition &globalPos) const + { return globalPos[1] < this->fvGridGeometry().bBoxMin()[1] + eps_; } + + bool onUpperBoundary_(const GlobalPosition &globalPos) const + { return globalPos[1] > this->fvGridGeometry().bBoxMax()[1] - eps_; } + + Scalar eps_; + std::shared_ptr<CouplingManager> couplingManager_; +}; +} //end namespace + +#endif //DUMUX_DARCY_SUBPROBLEM_HH diff --git a/exercises/solution/exercise-coupling-ff-pm/models/CMakeLists.txt b/exercises/solution/exercise-coupling-ff-pm/models/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..f7e7af5fdf7667b674cdf987c20a7f23985487e5 --- /dev/null +++ b/exercises/solution/exercise-coupling-ff-pm/models/CMakeLists.txt @@ -0,0 +1,24 @@ +add_input_file_links() + +dune_add_test(NAME orig_ex_models_coupling_ff-pm + SOURCES ex_models_coupling_ff-pm.cc + COMPILE_DEFINITIONS EXNUMBER=0 + CMD_ARGS ex_models_coupling_ff-pm.input) + +dune_add_test(NAME sol_a_ex_models_coupling_ff-pm + SOURCES ex_models_coupling_ff-pm.cc + COMPILE_DEFINITIONS EXNUMBER=1 + CMD_ARGS ex_models_coupling_ff-pm.input) + +dune_add_test(NAME sol_b_ex_models_coupling_ff-pm + SOURCES ex_models_coupling_ff-pm.cc + COMPILE_DEFINITIONS EXNUMBER=2 + CMD_ARGS ex_models_coupling_ff-pm.input) + +dune_add_test(NAME sol_c_ex_models_coupling_ff-pm + SOURCES ex_models_coupling_ff-pm.cc + COMPILE_DEFINITIONS EXNUMBER=3 + CMD_ARGS ex_models_coupling_ff-pm.input) + +# add exercise to the common target +add_dependencies(test_exercises sol_a_ex_models_coupling_ff-pm sol_b_ex_models_coupling_ff-pm sol_b_ex_models_coupling_ff-pm) diff --git a/exercises/solution/exercise-coupling-ff-pm/models/ex_models_coupling_ff-pm.cc b/exercises/solution/exercise-coupling-ff-pm/models/ex_models_coupling_ff-pm.cc new file mode 100644 index 0000000000000000000000000000000000000000..cdb7abdd800c9994ade2dab51adda2076ed7a51d --- /dev/null +++ b/exercises/solution/exercise-coupling-ff-pm/models/ex_models_coupling_ff-pm.cc @@ -0,0 +1,311 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 2 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ +/*! + * \file + * + * \brief A test problem for the coupled Stokes/Darcy problem (1p) + */ +#include <config.h> + +#include <ctime> +#include <iostream> +#include <fstream> + +#include <dune/common/parallel/mpihelper.hh> +#include <dune/common/timer.hh> +#include <dune/istl/io.hh> + +#include <dumux/common/properties.hh> +#include <dumux/common/parameters.hh> +#include <dumux/common/dumuxmessage.hh> +#include <dumux/common/geometry/diameter.hh> +#include <dumux/linear/seqsolverbackend.hh> +#include <dumux/assembly/fvassembler.hh> +#include <dumux/assembly/diffmethod.hh> +#include <dumux/discretization/methods.hh> +#include <dumux/io/vtkoutputmodule.hh> +#include <dumux/io/staggeredvtkoutputmodule.hh> +#include <dumux/io/grid/gridmanager.hh> + +#include <dumux/multidomain/staggeredtraits.hh> +#include <dumux/multidomain/fvassembler.hh> +#if EXNUMBER >= 3 +#include <dumux/multidomain/privarswitchnewtonsolver.hh> +#else +#include <dumux/multidomain/newtonsolver.hh> +#endif + +#include <dumux/multidomain/boundary/stokesdarcy/couplingmanager.hh> + +#include "ex_models_pmproblem.hh" +#include "ex_models_ffproblem.hh" + +namespace Dumux { +namespace Properties { + +SET_PROP(StokesTypeTag, CouplingManager) +{ + using Traits = StaggeredMultiDomainTraits<TypeTag, TypeTag, TTAG(DarcyTypeTag)>; + using type = Dumux::StokesDarcyCouplingManager<Traits>; +}; + +SET_PROP(DarcyTypeTag, CouplingManager) +{ + using Traits = StaggeredMultiDomainTraits<TTAG(StokesTypeTag), TTAG(StokesTypeTag), TypeTag>; + using type = Dumux::StokesDarcyCouplingManager<Traits>; +}; + +} // end namespace Properties +} // end namespace Dumux + +int main(int argc, char** argv) try +{ + using namespace Dumux; + + // initialize MPI, finalize is done automatically on exit + const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv); + + // print dumux start message + if (mpiHelper.rank() == 0) + DumuxMessage::print(/*firstCall=*/true); + + // parse command line arguments and input file + Parameters::init(argc, argv); + + // Define the sub problem type tags + using StokesTypeTag = TTAG(StokesTypeTag); + using DarcyTypeTag = TTAG(DarcyTypeTag); + + // try to create a grid (from the given grid file or the input file) + // for both sub-domains + using DarcyGridManager = Dumux::GridManager<typename GET_PROP_TYPE(DarcyTypeTag, Grid)>; + DarcyGridManager darcyGridManager; + darcyGridManager.init("Darcy"); // pass parameter group + + using StokesGridManager = Dumux::GridManager<typename GET_PROP_TYPE(StokesTypeTag, Grid)>; + StokesGridManager stokesGridManager; + stokesGridManager.init("Stokes"); // pass parameter group + + // we compute on the leaf grid view + const auto& darcyGridView = darcyGridManager.grid().leafGridView(); + const auto& stokesGridView = stokesGridManager.grid().leafGridView(); + + // create the finite volume grid geometry + using StokesFVGridGeometry = typename GET_PROP_TYPE(StokesTypeTag, FVGridGeometry); + auto stokesFvGridGeometry = std::make_shared<StokesFVGridGeometry>(stokesGridView); + stokesFvGridGeometry->update(); + using DarcyFVGridGeometry = typename GET_PROP_TYPE(DarcyTypeTag, FVGridGeometry); + auto darcyFvGridGeometry = std::make_shared<DarcyFVGridGeometry>(darcyGridView); + darcyFvGridGeometry->update(); + + using Traits = StaggeredMultiDomainTraits<StokesTypeTag, StokesTypeTag, DarcyTypeTag>; + + // the coupling manager + using CouplingManager = StokesDarcyCouplingManager<Traits>; + auto couplingManager = std::make_shared<CouplingManager>(stokesFvGridGeometry, darcyFvGridGeometry); + + // the indices + constexpr auto stokesCellCenterIdx = CouplingManager::stokesCellCenterIdx; + constexpr auto stokesFaceIdx = CouplingManager::stokesFaceIdx; + constexpr auto darcyIdx = CouplingManager::darcyIdx; + + // the problem (initial and boundary conditions) + using StokesProblem = typename GET_PROP_TYPE(StokesTypeTag, Problem); + auto stokesProblem = std::make_shared<StokesProblem>(stokesFvGridGeometry, couplingManager); + using DarcyProblem = typename GET_PROP_TYPE(DarcyTypeTag, Problem); + auto darcyProblem = std::make_shared<DarcyProblem>(darcyFvGridGeometry, couplingManager); + + // initialize the fluidsystem (tabulation) + GET_PROP_TYPE(StokesTypeTag, FluidSystem)::init(); + + // get some time loop parameters + using Scalar = typename GET_PROP_TYPE(StokesTypeTag, Scalar); + const auto tEnd = getParam<Scalar>("TimeLoop.TEnd"); + const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize"); + auto dt = getParam<Scalar>("TimeLoop.DtInitial"); + + // check if we are about to restart a previously interrupted simulation + Scalar restartTime = 0; + if (Parameters::getTree().hasKey("Restart") || Parameters::getTree().hasKey("TimeLoop.Restart")) + restartTime = getParam<Scalar>("TimeLoop.Restart"); + + // instantiate time loop + auto timeLoop = std::make_shared<CheckPointTimeLoop<Scalar>>(restartTime, dt, tEnd); + timeLoop->setMaxTimeStepSize(maxDt); + stokesProblem->setTimeLoop(timeLoop); + darcyProblem->setTimeLoop(timeLoop); + + // the solution vector + Traits::SolutionVector sol; + sol[stokesCellCenterIdx].resize(stokesFvGridGeometry->numCellCenterDofs()); + sol[stokesFaceIdx].resize(stokesFvGridGeometry->numFaceDofs()); + sol[darcyIdx].resize(darcyFvGridGeometry->numDofs()); + + const auto& cellCenterSol = sol[stokesCellCenterIdx]; + const auto& faceSol = sol[stokesFaceIdx]; + + // apply initial solution for instationary problems + typename GET_PROP_TYPE(StokesTypeTag, SolutionVector) stokesSol; + std::get<0>(stokesSol) = cellCenterSol; + std::get<1>(stokesSol) = faceSol; + stokesProblem->applyInitialSolution(stokesSol); + auto solStokesOld = stokesSol; + sol[stokesCellCenterIdx] = stokesSol[stokesCellCenterIdx]; + sol[stokesFaceIdx] = stokesSol[stokesFaceIdx]; + + darcyProblem->applyInitialSolution(sol[darcyIdx]); + auto solDarcyOld = sol[darcyIdx]; + + auto solOld = sol; + + couplingManager->init(stokesProblem, darcyProblem, sol); + + // the grid variables + using StokesGridVariables = typename GET_PROP_TYPE(StokesTypeTag, GridVariables); + auto stokesGridVariables = std::make_shared<StokesGridVariables>(stokesProblem, stokesFvGridGeometry); + stokesGridVariables->init(stokesSol, solStokesOld); + using DarcyGridVariables = typename GET_PROP_TYPE(DarcyTypeTag, GridVariables); + auto darcyGridVariables = std::make_shared<DarcyGridVariables>(darcyProblem, darcyFvGridGeometry); + darcyGridVariables->init(sol[darcyIdx], solDarcyOld); + + // intialize the vtk output module +#if EXNUMBER >= 1 + const std::array<std::string, 3> part = {"a", "b", "c"}; + const auto stokesName = "sol_" + part[EXNUMBER-1] + "_" + getParam<std::string>("Problem.Name") + "_" + stokesProblem->name(); + const auto darcyName = "sol_" + part[EXNUMBER-1] + "_" + getParam<std::string>("Problem.Name") + "_" + darcyProblem->name(); +#else + const auto stokesName = "orig_" + getParam<std::string>("Problem.Name") + "_" + stokesProblem->name(); + const auto darcyName = "orig_" + getParam<std::string>("Problem.Name") + "_" + darcyProblem->name(); +#endif + + StaggeredVtkOutputModule<StokesTypeTag> stokesVtkWriter(*stokesProblem, *stokesFvGridGeometry, *stokesGridVariables, stokesSol, stokesName); + GET_PROP_TYPE(StokesTypeTag, VtkOutputFields)::init(stokesVtkWriter); + stokesVtkWriter.write(0.0); + + VtkOutputModule<DarcyTypeTag> darcyVtkWriter(*darcyProblem, *darcyFvGridGeometry, *darcyGridVariables, sol[darcyIdx], darcyName); + GET_PROP_TYPE(DarcyTypeTag, VtkOutputFields)::init(darcyVtkWriter); + darcyVtkWriter.write(0.0); + + // intialize the subproblems + darcyProblem->init(sol[darcyIdx], *darcyGridVariables); + + // the assembler with time loop for instationary problem + using Assembler = MultiDomainFVAssembler<Traits, CouplingManager, DiffMethod::numeric>; + auto assembler = std::make_shared<Assembler>(std::make_tuple(stokesProblem, stokesProblem, darcyProblem), + std::make_tuple(stokesFvGridGeometry->cellCenterFVGridGeometryPtr(), + stokesFvGridGeometry->faceFVGridGeometryPtr(), + darcyFvGridGeometry), + std::make_tuple(stokesGridVariables->cellCenterGridVariablesPtr(), + stokesGridVariables->faceGridVariablesPtr(), + darcyGridVariables), + couplingManager, + timeLoop); + + // the linear solver + using LinearSolver = UMFPackBackend; + auto linearSolver = std::make_shared<LinearSolver>(); + + // the primary variable switches used by the sub models and the non-linear solver +#if EXNUMBER >= 3 + using PriVarSwitchTuple = std::tuple<NoPrimaryVariableSwitch, NoPrimaryVariableSwitch, typename GET_PROP_TYPE(DarcyTypeTag, PrimaryVariableSwitch)>; + using NewtonSolver = MultiDomainPriVarSwitchNewtonSolver<Assembler, LinearSolver, CouplingManager, PriVarSwitchTuple>; +#else +// using PriVarSwitchTuple = std::tuple<NoPrimaryVariableSwitch, NoPrimaryVariableSwitch, NoPrimaryVariableSwitch>; + using NewtonSolver = MultiDomainNewtonSolver<Assembler, LinearSolver, CouplingManager>; +#endif + NewtonSolver nonLinearSolver(assembler, linearSolver, couplingManager); + + // time loop + const auto episodeLength = getParam<Scalar>("TimeLoop.EpisodeLength"); + if (episodeLength > 0.0) + timeLoop->setPeriodicCheckPoint(episodeLength); + timeLoop->start(); do + { + // set previous solution for storage evaluations + assembler->setPreviousSolution(solOld); + + // solve the non-linear system with time step control + nonLinearSolver.solve(sol, *timeLoop); + + // make the new solution the old solution + solOld = sol; + stokesGridVariables->advanceTimeStep(); + darcyGridVariables->advanceTimeStep(); + + // advance to the time loop to the next step + timeLoop->advanceTimeStep(); + + // call the postTimeStep routine for output + darcyProblem->postTimeStep(sol[darcyIdx], *darcyGridVariables); + + // write vtk output + if (timeLoop->isCheckPoint() || timeLoop->finished() || episodeLength < 0.0) + { + stokesVtkWriter.write(timeLoop->time()); + darcyVtkWriter.write(timeLoop->time()); + } + + // report statistics of this time step + timeLoop->reportTimeStep(); + + // set new dt as suggested by newton solver + timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize())); + + } while (!timeLoop->finished()); + + timeLoop->finalize(stokesGridView.comm()); + timeLoop->finalize(darcyGridView.comm()); + + //////////////////////////////////////////////////////////// + // finalize, print dumux message to say goodbye + //////////////////////////////////////////////////////////// + + // print dumux end message + if (mpiHelper.rank() == 0) + { + Parameters::print(); + DumuxMessage::print(/*firstCall=*/false); + } + + return 0; +} // end main +catch (Dumux::ParameterException &e) +{ + std::cerr << std::endl << e << " ---> Abort!" << std::endl; + return 1; +} +catch (Dune::DGFException & e) +{ + std::cerr << "DGF exception thrown (" << e << + "). Most likely, the DGF file name is wrong " + "or the DGF file is corrupted, " + "e.g. missing hash at end of file or wrong number (dimensions) of entries." + << " ---> Abort!" << std::endl; + return 2; +} +catch (Dune::Exception &e) +{ + std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl; + return 3; +} +catch (...) +{ + std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl; + return 4; +} diff --git a/exercises/solution/exercise-coupling-ff-pm/models/ex_models_coupling_ff-pm.input b/exercises/solution/exercise-coupling-ff-pm/models/ex_models_coupling_ff-pm.input new file mode 100644 index 0000000000000000000000000000000000000000..8d08fe836a2682e36007bbafa51c6438a5d15c6e --- /dev/null +++ b/exercises/solution/exercise-coupling-ff-pm/models/ex_models_coupling_ff-pm.input @@ -0,0 +1,49 @@ +[TimeLoop] +DtInitial = 100 # s +EpisodeLength = -360 # s # 0.25 days +TEnd = 256000 # s # 2 days + +[Stokes.Grid] +LowerLeft = 0 1 +UpperRight = 1 2 +Cells = 16 16 + +[Darcy.Grid] +UpperRight = 1 1 +Cells = 16 16 + +[Stokes.Problem] +Name = stokes +EnableGravity = false +MoleFraction = 0.0 # - +Pressure = 1e5 # Pa +Velocity = 1e-3 # m/s + +[Darcy.Problem] +Name = darcy +EnableGravity = true +Saturation = 0.1 # - +MoleFraction = 0.1 # - +Pressure = 1e5 # Pa + +[Darcy.SpatialParams] +Permeability = 2.65e-10 # m^2 +Porosity = 0.4 # - +AlphaBeaversJoseph = 1.0 # - +# EXNUMBER >= 1 +Swr = 0.005 +Snr = 0.01 +VgAlpha = 6.5e-4 +VgN = 8.0 + +[Problem] +Name = ex_models_coupling +PlotFluxes = false +PlotStorage = false + +[Newton] +MaxSteps = 12 +MaxRelativeShift = 1e-5 + +[Vtk] +AddVelocity = 1 diff --git a/exercises/solution/exercise-coupling-ff-pm/models/ex_models_ffproblem.hh b/exercises/solution/exercise-coupling-ff-pm/models/ex_models_ffproblem.hh new file mode 100644 index 0000000000000000000000000000000000000000..3d59b25a071ed0e71a0c3baac902b4847a2ce840 --- /dev/null +++ b/exercises/solution/exercise-coupling-ff-pm/models/ex_models_ffproblem.hh @@ -0,0 +1,344 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 2 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ +/*! + * \file + * \ingroup NavierStokesTests + * \brief A simple Stokes test problem for the staggered grid (Navier-)Stokes model. + */ +#ifndef DUMUX_STOKES1P2C_SUBPROBLEM_HH +#define DUMUX_STOKES1P2C_SUBPROBLEM_HH + +#include <dune/grid/yaspgrid.hh> + +#include <dumux/material/fluidsystems/1padapter.hh> +#include <dumux/material/fluidsystems/h2oair.hh> + +#include <dumux/freeflow/navierstokes/problem.hh> +#include <dumux/discretization/staggered/freeflow/properties.hh> +#include <dumux/freeflow/compositional/navierstokesncmodel.hh> + +namespace Dumux +{ +template <class TypeTag> +class StokesSubProblem; + +namespace Properties +{ +NEW_TYPE_TAG(StokesTypeTag, INHERITS_FROM(StaggeredFreeFlowModel, NavierStokesNC)); + +// Set the grid type +SET_TYPE_PROP(StokesTypeTag, Grid, Dune::YaspGrid<2, Dune::EquidistantOffsetCoordinates<typename GET_PROP_TYPE(TypeTag, Scalar), 2> >); + +// The fluid system +SET_PROP(StokesTypeTag, FluidSystem) +{ + using H2OAir = FluidSystems::H2OAir<typename GET_PROP_TYPE(TypeTag, Scalar)>; + using type = FluidSystems::OnePAdapter<H2OAir, H2OAir::gasPhaseIdx>; +}; + +// Do not replace one equation with a total mass balance +SET_INT_PROP(StokesTypeTag, ReplaceCompEqIdx, 3); + +// Use formulation based on mass fractions +SET_BOOL_PROP(StokesTypeTag, UseMoles, true); + +// Set the problem property +SET_TYPE_PROP(StokesTypeTag, Problem, Dumux::StokesSubProblem<TypeTag> ); + +SET_BOOL_PROP(StokesTypeTag, EnableFVGridGeometryCache, true); +SET_BOOL_PROP(StokesTypeTag, EnableGridFluxVariablesCache, true); +SET_BOOL_PROP(StokesTypeTag, EnableGridVolumeVariablesCache, true); + +SET_BOOL_PROP(StokesTypeTag, EnableInertiaTerms, false); +} + +/*! + * \ingroup NavierStokesTests + * \brief Test problem for the one-phase compositional (Navier-) Stokes problem. + * + * Horizontal flow from left to right with a parabolic velocity profile. + */ +template <class TypeTag> +class StokesSubProblem : public NavierStokesProblem<TypeTag> +{ + using ParentType = NavierStokesProblem<TypeTag>; + + using GridView = typename GET_PROP_TYPE(TypeTag, GridView); + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + using FluidSystem = typename GET_PROP_TYPE(TypeTag, FluidSystem); + using Indices = typename GET_PROP_TYPE(TypeTag, ModelTraits)::Indices; + using BoundaryTypes = typename GET_PROP_TYPE(TypeTag, BoundaryTypes); + + using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); + using FVElementGeometry = typename FVGridGeometry::LocalView; + using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace; + using Element = typename GridView::template Codim<0>::Entity; + using ElementVolumeVariables = typename GET_PROP_TYPE(TypeTag, GridVolumeVariables)::LocalView; + using ElementFaceVariables = typename GET_PROP_TYPE(TypeTag, GridFaceVariables)::LocalView; + using FluidState = typename GET_PROP_TYPE(TypeTag, FluidState); + + using GlobalPosition = typename Element::Geometry::GlobalCoordinate; + + using PrimaryVariables = typename GET_PROP_TYPE(TypeTag, PrimaryVariables); + using NumEqVector = typename GET_PROP_TYPE(TypeTag, NumEqVector); + + using CouplingManager = typename GET_PROP_TYPE(TypeTag, CouplingManager); + using TimeLoopPtr = std::shared_ptr<TimeLoop<Scalar>>; + + static constexpr bool useMoles = GET_PROP_TYPE(TypeTag, ModelTraits)::useMoles(); + + static constexpr auto dim = GET_PROP_TYPE(TypeTag, ModelTraits)::dim(); + static constexpr auto transportCompIdx = 1; + +public: + StokesSubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry, std::shared_ptr<CouplingManager> couplingManager) + : ParentType(fvGridGeometry, "Stokes"), eps_(1e-6), couplingManager_(couplingManager) + { + velocity_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.Velocity"); + pressure_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.Pressure"); + moleFraction_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.MoleFraction"); + } + + /*! + * \name Problem parameters + */ + // \{ + + + bool shouldWriteRestartFile() const + { return false; } + + /*! + * \brief Return the temperature within the domain in [K]. + */ + Scalar temperature() const + { return 293.15; } + + /*! + * \brief Return the sources within the domain. + * + * \param globalPos The global position + */ + NumEqVector sourceAtPos(const GlobalPosition &globalPos) const + { return NumEqVector(0.0); } + + // \} + /*! + * \name Boundary conditions + */ + // \{ + + /*! + * \brief Specifies which kind of boundary condition should be + * used for which equation on a given boundary segment. + * + * \param element The finite element + * \param scvf The sub control volume face + */ + BoundaryTypes boundaryTypes(const Element& element, + const SubControlVolumeFace& scvf) const + { + BoundaryTypes values; + + const auto& globalPos = scvf.center(); + + if(onLeftBoundary_(globalPos)) + { + values.setDirichlet(Indices::conti0EqIdx + 1); + values.setDirichlet(Indices::velocityXIdx); + values.setDirichlet(Indices::velocityYIdx); + } + else if(onRightBoundary_(globalPos)) + { + values.setDirichlet(Indices::pressureIdx); + values.setOutflow(Indices::conti0EqIdx + 1); + } + else + { + values.setDirichlet(Indices::velocityXIdx); + values.setDirichlet(Indices::velocityYIdx); + values.setNeumann(Indices::conti0EqIdx); + values.setNeumann(Indices::conti0EqIdx + 1); + } + + if (couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf)) + { + values.setCouplingNeumann(Indices::conti0EqIdx); + values.setCouplingNeumann(Indices::conti0EqIdx + 1); + values.setCouplingNeumann(Indices::momentumYBalanceIdx); + values.setBJS(Indices::momentumXBalanceIdx); + } + + return values; + } + + /*! + * \brief Evaluate the boundary conditions for a Dirichlet control volume. + * + * \param element The element + * \param scvf The subcontrolvolume face + */ + PrimaryVariables dirichletAtPos(const GlobalPosition& pos) const + { + PrimaryVariables values(0.0); + values = initialAtPos(pos); + + return values; + } + + /*! + * \brief Evaluate the boundary conditions for a Neumann control volume. + * + * \param element The element for which the Neumann boundary condition is set + * \param fvGeomentry The fvGeometry + * \param elemVolVars The element volume variables + * \param elemFaceVars The element face variables + * \param scvf The boundary sub control volume face + */ + NumEqVector neumann(const Element& element, + const FVElementGeometry& fvGeometry, + const ElementVolumeVariables& elemVolVars, + const ElementFaceVariables& elemFaceVars, + const SubControlVolumeFace& scvf) const + { + PrimaryVariables values(0.0); + + if(couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf)) + { + values[Indices::momentumYBalanceIdx] = couplingManager().couplingData().momentumCouplingCondition(fvGeometry, elemVolVars, elemFaceVars, scvf); + + const auto massFlux = couplingManager().couplingData().massCouplingCondition(fvGeometry, elemVolVars, elemFaceVars, scvf); + values[Indices::conti0EqIdx] = massFlux[0]; + values[Indices::conti0EqIdx + 1] = massFlux[1]; + } + return values; + } + + // \} + + /*! + * \brief Set the coupling manager + */ + void setCouplingManager(std::shared_ptr<CouplingManager> cm) + { couplingManager_ = cm; } + + /*! + * \brief Get the coupling manager + */ + const CouplingManager& couplingManager() const + { return *couplingManager_; } + + /*! + * \name Volume terms + */ + // \{ + + /*! + * \brief Evaluate the initial value for a control volume. + * + * \param globalPos The global position + */ + PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const + { + FluidState fluidState; + updateFluidStateForBC_(fluidState, pressure_); + const Scalar density = FluidSystem::density(fluidState, 0); + + PrimaryVariables values(0.0); + values[Indices::pressureIdx] = pressure_ + density*this->gravity()[1]*(globalPos[1] - this->fvGridGeometry().bBoxMin()[1]); + values[Indices::conti0EqIdx + 1] = moleFraction_; + values[Indices::velocityXIdx] = 4.0 * velocity_ * (globalPos[1] - this->fvGridGeometry().bBoxMin()[1]) + * (this->fvGridGeometry().bBoxMax()[1] - globalPos[1]) + / (height_() * height_()); + + return values; + } + + void setTimeLoop(TimeLoopPtr timeLoop) + { timeLoop_ = timeLoop; } + + /*! + * \brief Returns the intrinsic permeability of required as input parameter for the Beavers-Joseph-Saffman boundary condition + */ + Scalar permeability(const SubControlVolumeFace& scvf) const + { + return couplingManager().couplingData().darcyPermeability(scvf); + } + + /*! + * \brief Returns the alpha value required as input parameter for the Beavers-Joseph-Saffman boundary condition + */ + Scalar alphaBJ(const SubControlVolumeFace& scvf) const + { + return couplingManager().problem(CouplingManager::darcyIdx).spatialParams().beaversJosephCoeffAtPos(scvf.center()); + } + + // \} + +private: + bool onLeftBoundary_(const GlobalPosition &globalPos) const + { return globalPos[0] < this->fvGridGeometry().bBoxMin()[0] + eps_; } + + bool onRightBoundary_(const GlobalPosition &globalPos) const + { return globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_; } + + bool onLowerBoundary_(const GlobalPosition &globalPos) const + { return globalPos[1] < this->fvGridGeometry().bBoxMin()[1] + eps_; } + + bool onUpperBoundary_(const GlobalPosition &globalPos) const + { return globalPos[1] > this->fvGridGeometry().bBoxMax()[1] - eps_; } + + //! \brief updates the fluid state to obtain required quantities for IC/BC + void updateFluidStateForBC_(FluidState& fluidState, const Scalar pressure) const + { + fluidState.setTemperature(temperature()); + fluidState.setPressure(0, pressure); + fluidState.setSaturation(0, 1.0); + fluidState.setMoleFraction(0, 1, moleFraction_); + fluidState.setMoleFraction(0, 0, 1.0 - moleFraction_); + + typename FluidSystem::ParameterCache paramCache; + paramCache.updatePhase(fluidState, 0); + + const Scalar density = FluidSystem::density(fluidState, paramCache, 0); + fluidState.setDensity(0, density); + + const Scalar molarDensity = FluidSystem::molarDensity(fluidState, paramCache, 0); + fluidState.setMolarDensity(0, molarDensity); + + const Scalar enthalpy = FluidSystem::enthalpy(fluidState, paramCache, 0); + fluidState.setEnthalpy(0, enthalpy); + } + // the height of the free-flow domain + const Scalar height_() const + { return this->fvGridGeometry().bBoxMax()[1] - this->fvGridGeometry().bBoxMin()[1]; } + + Scalar eps_; + + Scalar velocity_; + Scalar pressure_; + Scalar moleFraction_; + + TimeLoopPtr timeLoop_; + + std::shared_ptr<CouplingManager> couplingManager_; +}; +} //end namespace + +#endif // DUMUX_STOKES1P2C_SUBPROBLEM_HH diff --git a/exercises/solution/exercise-coupling-ff-pm/models/ex_models_pmproblem.hh b/exercises/solution/exercise-coupling-ff-pm/models/ex_models_pmproblem.hh new file mode 100644 index 0000000000000000000000000000000000000000..18ad042dfdb65cbfc9a61389f8a7084a21e34eed --- /dev/null +++ b/exercises/solution/exercise-coupling-ff-pm/models/ex_models_pmproblem.hh @@ -0,0 +1,471 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 2 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ +/*! + * \file + * + * \brief A simple Darcy test problem (cell-centered finite volume method). + */ +#ifndef DUMUX_DARCY_SUBPROBLEM_HH +#define DUMUX_DARCY_SUBPROBLEM_HH + +#include <dune/grid/yaspgrid.hh> + +#include <dumux/material/fluidsystems/1padapter.hh> +#include <dumux/discretization/cellcentered/tpfa/properties.hh> +#include <dumux/io/gnuplotinterface.hh> +#include <dumux/material/fluidsystems/h2oair.hh> +#include <dumux/material/fluidmatrixinteractions/diffusivityconstanttortuosity.hh> + +#include <dumux/porousmediumflow/problem.hh> + +#if EXNUMBER >= 1 +#include <dumux/porousmediumflow/2pnc/model.hh> +#include "../2pspatialparams.hh" +#else +#include <dumux/porousmediumflow/1pnc/model.hh> +#include "../1pspatialparams.hh" +#endif + +namespace Dumux +{ +template <class TypeTag> +class DarcySubProblem; + +namespace Properties +{ +#if EXNUMBER >= 1 +NEW_TYPE_TAG(DarcyTypeTag, INHERITS_FROM(CCTpfaModel, TwoPNC)); +#else +NEW_TYPE_TAG(DarcyTypeTag, INHERITS_FROM(CCTpfaModel, OnePNC)); +#endif + +// Set the problem property +SET_TYPE_PROP(DarcyTypeTag, Problem, Dumux::DarcySubProblem<TypeTag>); + +// The fluid system +SET_PROP(DarcyTypeTag, FluidSystem) +{ + using H2OAir = FluidSystems::H2OAir<typename GET_PROP_TYPE(TypeTag, Scalar)>; +#if EXNUMBER == 0 + using type = FluidSystems::OnePAdapter<H2OAir, H2OAir::gasPhaseIdx>; +#else + using type = H2OAir; +#endif +}; + +// Use moles +SET_BOOL_PROP(DarcyTypeTag, UseMoles, true); + +// Do not replace one equation with a total mass balance +SET_INT_PROP(DarcyTypeTag, ReplaceCompEqIdx, 3); + +//! Use a model with constant tortuosity for the effective diffusivity +SET_TYPE_PROP(DarcyTypeTag, EffectiveDiffusivityModel, + DiffusivityConstantTortuosity<typename GET_PROP_TYPE(TypeTag, Scalar)>); + +// Set the grid type +SET_TYPE_PROP(DarcyTypeTag, Grid, Dune::YaspGrid<2>); + +#if EXNUMBER >= 1 +//! Set the default formulation to pw-Sn: This can be over written in the problem. +SET_PROP(DarcyTypeTag, Formulation) +{ static constexpr auto value = TwoPFormulation::p1s0; }; +#endif + +// Set the spatial paramaters type +#if EXNUMBER >= 1 +SET_TYPE_PROP(DarcyTypeTag, SpatialParams, TwoPSpatialParams<TypeTag>); +#else +SET_TYPE_PROP(DarcyTypeTag, SpatialParams, OnePSpatialParams<TypeTag>); +#endif +} + +template <class TypeTag> +class DarcySubProblem : public PorousMediumFlowProblem<TypeTag> +{ + using ParentType = PorousMediumFlowProblem<TypeTag>; + using GridView = typename GET_PROP_TYPE(TypeTag, GridView); + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + using PrimaryVariables = typename GET_PROP_TYPE(TypeTag, PrimaryVariables); + using FluidSystem = typename GET_PROP_TYPE(TypeTag, FluidSystem); + using NumEqVector = typename GET_PROP_TYPE(TypeTag, NumEqVector); + using BoundaryTypes = typename GET_PROP_TYPE(TypeTag, BoundaryTypes); + using FVElementGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry)::LocalView; + using SubControlVolume = typename FVElementGeometry::SubControlVolume; + using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace; + using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); + + // copy some indices for convenience + using Indices = typename GET_PROP_TYPE(TypeTag, ModelTraits)::Indices; + enum { + // grid and world dimension + dim = GridView::dimension, + dimworld = GridView::dimensionworld, + + // primary variable indices + conti0EqIdx = Indices::conti0EqIdx, + pressureIdx = Indices::pressureIdx, +#if EXNUMBER >= 3 + saturationIdx = Indices::switchIdx, + transportCompIdx = Indices::switchIdx +#elif EXNUMBER >= 1 + transportCompIdx = Indices::switchIdx +#else + phaseIdx = 0, + transportCompIdx = 1 +#endif + }; + + using Element = typename GridView::template Codim<0>::Entity; + using GlobalPosition = Dune::FieldVector<Scalar, dimworld>; + + using CouplingManager = typename GET_PROP_TYPE(TypeTag, CouplingManager); + using TimeLoopPtr = std::shared_ptr<TimeLoop<Scalar>>; + +public: + DarcySubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry, + std::shared_ptr<CouplingManager> couplingManager) + : ParentType(fvGridGeometry, "Darcy"), eps_(1e-7), couplingManager_(couplingManager) + { +#if EXNUMBER >= 3 + saturation_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.Saturation"); +#else + moleFraction_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.MoleFraction"); +#endif + pressure_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.Pressure"); + + // initialize output file + plotFluxes_ = getParamFromGroup<bool>(this->paramGroup(), "Problem.PlotFluxes", false); + plotStorage_ = getParamFromGroup<bool>(this->paramGroup(), "Problem.PlotStorage", false); + storageFileName_ = "storage_" + getParam<std::string>("Problem.Name") + "_" + this->name() + ".csv"; + storageFile_.open(storageFileName_); + storageFile_ << "#Time[s]" << ";" + << "WaterMass[kg]" << ";" + << "WaterMassLoss[kg]" << ";" + << "EvaporationRate[mm/d]" + << std::endl; + } + + /*! + * \name Simulation steering + */ + // \{ + + /*! + * \brief Initialize the problem. + */ + template<class SolutionVector, class GridVariables> + void init(const SolutionVector& curSol, + const GridVariables& gridVariables) + { +#if EXNUMBER >= 2 + initialWaterContent_ = evaluateWaterMassStorageTerm(curSol, gridVariables); + lastWaterMass_ = initialWaterContent_; +#endif + } + + template<class SolutionVector, class GridVariables> + void postTimeStep(const SolutionVector& curSol, + const GridVariables& gridVariables) + + { + evaluateWaterMassStorageTerm(curSol, gridVariables); + evaluateInterfaceFluxes(curSol, gridVariables); + + gnuplotStorage_.resetPlot(); + gnuplotStorage_.setDatafileSeparator(';'); + gnuplotStorage_.setXlabel("time [d]"); + gnuplotStorage_.setXRange(0.0, getParam<Scalar>("TimeLoop.TEnd")); + gnuplotStorage_.setYlabel("evaporation rate [mm/d]"); + gnuplotStorage_.setOption("set yrange [0.0:]"); + gnuplotStorage_.setOption("set y2label 'cumulative mass loss'"); + gnuplotStorage_.setOption("set y2range [0.0:0.5]"); + gnuplotStorage_.setOption("set y2range [0.0:0.5]"); + gnuplotStorage_.addFileToPlot(storageFileName_, "using 1:4 with lines title 'evaporation rate'"); + gnuplotStorage_.addFileToPlot(storageFileName_, "using 1:3 axes x1y2 with lines title 'cumulative mass loss'"); + if (plotStorage_) + gnuplotStorage_.plot("temp"); + } + + template<class SolutionVector, class GridVariables> + Scalar evaluateWaterMassStorageTerm(const SolutionVector& curSol, + const GridVariables& gridVariables) + + { + // compute the mass in the entire domain + Scalar waterMass = 0.0; + + for (const auto& element : elements(this->fvGridGeometry().gridView())) + { + auto fvGeometry = localView(this->fvGridGeometry()); + fvGeometry.bindElement(element); + + auto elemVolVars = localView(gridVariables.curGridVolVars()); + elemVolVars.bindElement(element, fvGeometry, curSol); + + for (auto&& scv : scvs(fvGeometry)) + { + const auto& volVars = elemVolVars[scv]; + for(int phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) + { + // insert calculation of the water mass here +#if EXNUMBER >= 2 + waterMass += volVars.massFraction(phaseIdx, FluidSystem::H2OIdx) * volVars.density(phaseIdx) + * volVars.saturation(phaseIdx) * volVars.porosity() + * scv.volume() * volVars.extrusionFactor(); +#else + waterMass += 0.0; +#endif + } + } + } +#if EXNUMBER >= 2 + std::cout << "Mass of water is: " << waterMass << std::endl; +#endif + + Scalar cumMassLoss = initialWaterContent_ - waterMass; + Scalar evaporationRate = (lastWaterMass_ - waterMass) * 86400 + / (this->fvGridGeometry().bBoxMax()[0] - this->fvGridGeometry().bBoxMin()[0]) + / timeLoop_->timeStepSize(); + lastWaterMass_ = waterMass; + + storageFile_ << timeLoop_->time() << ";" + << waterMass << ";" + << cumMassLoss << ";" + << evaporationRate + << std::endl; + + return waterMass; + } + + template<class SolutionVector, class GridVariables> + void evaluateInterfaceFluxes(const SolutionVector& curSol, + const GridVariables& gridVariables) + + { + std::vector<Scalar> x; + std::vector<Scalar> y; + + for (const auto& element : elements(this->fvGridGeometry().gridView())) + { + auto fvGeometry = localView(this->fvGridGeometry()); + fvGeometry.bindElement(element); + + auto elemVolVars = localView(gridVariables.curGridVolVars()); + elemVolVars.bindElement(element, fvGeometry, curSol); + + for (auto&& scvf : scvfs(fvGeometry)) + { + if (!couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf)) + continue; + + // NOTE: binding the coupling context is necessary + couplingManager_->bindCouplingContext(CouplingManager::darcyIdx, element); +#if EXNUMBER >= 2 + NumEqVector flux = couplingManager().couplingData().massCouplingCondition(fvGeometry, elemVolVars, scvf); +#else + NumEqVector flux(0.0); // add "massCouplingCondition" from the couplingManager here +#endif + + x.push_back(scvf.center()[0]); + y.push_back(flux[transportCompIdx]); + } + } + + gnuplotInterfaceFluxes_.resetPlot(); + gnuplotInterfaceFluxes_.setXlabel("x-position [m]"); + gnuplotInterfaceFluxes_.setXRange(this->fvGridGeometry().bBoxMin()[0], this->fvGridGeometry().bBoxMax()[0]); + gnuplotInterfaceFluxes_.setYlabel("flux [kg/(m^2 s)]"); + gnuplotInterfaceFluxes_.setYRange(-5e-4, 0.0); + gnuplotInterfaceFluxes_.setOption("set label 'time: " + std::to_string(timeLoop_->time()/86400.) + "d' at graph 0.8,0.8 "); + std::string fluxFileName = "flux_" + std::to_string(timeLoop_->timeStepIndex()) + + "_" + getParam<std::string>("Problem.Name") + "_" + this->name() + ".csv"; + gnuplotInterfaceFluxes_.addDataSetToPlot(x, y, fluxFileName, "with lines title 'water mass flux'"); + if (plotFluxes_) + gnuplotInterfaceFluxes_.plot("flux_" + std::to_string(timeLoop_->timeStepIndex())); + } + + /*! + * \brief Returns true if a restart file should be written to + * disk. + */ + bool shouldWriteRestartFile() const + { return false; } + + /*! + * \name Problem parameters + */ + // \{ + + bool shouldWriteOutput() const // define output + { return true; } + + /*! + * \brief Return the temperature within the domain in [K]. + * + */ + Scalar temperature() const + { return 293.15; } + // \} + + /*! + * \name Boundary conditions + */ + // \{ + + /*! + * \brief Specifies which kind of boundary condition should be + * used for which equation on a given boundary control volume. + * + * \param element The element + * \param scvf The boundary sub control volume face + */ + BoundaryTypes boundaryTypes(const Element& element, const SubControlVolumeFace& scvf) const + { + BoundaryTypes values; + values.setAllNeumann(); + + if (couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf)) + values.setAllCouplingNeumann(); + + return values; + } + + /*! + * \brief Evaluate the boundary conditions for a Neumann control volume. + * + * \param element The element for which the Neumann boundary condition is set + * \param fvGeomentry The fvGeometry + * \param elemVolVars The element volume variables + * \param scvf The boundary sub control volume face + * + * For this method, the \a values variable stores primary variables. + */ + template<class ElementVolumeVariables> + NumEqVector neumann(const Element& element, + const FVElementGeometry& fvGeometry, + const ElementVolumeVariables& elemVolVars, + const SubControlVolumeFace& scvf) const + { + NumEqVector values(0.0); + + if (couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf)) + values = couplingManager().couplingData().massCouplingCondition(fvGeometry, elemVolVars, scvf); + + return values; + } + + // \} + + /*! + * \name Volume terms + */ + // \{ + /*! + * \brief Evaluate the source term for all phases within a given + * sub-control-volume. + * + * \param element The element for which the source term is set + * \param fvGeomentry The fvGeometry + * \param elemVolVars The element volume variables + * \param scv The subcontrolvolume + */ + template<class ElementVolumeVariables> + NumEqVector source(const Element &element, + const FVElementGeometry& fvGeometry, + const ElementVolumeVariables& elemVolVars, + const SubControlVolume &scv) const + { return NumEqVector(0.0); } + + // \} + + /*! + * \brief Evaluate the initial value for a control volume. + * + * \param element The element + * + * For this method, the \a priVars parameter stores primary + * variables. + */ + PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const + { + PrimaryVariables values(0.0); +#if EXNUMBER >= 3 + values.setState(3/*bothPhases*/); + values[saturationIdx] = saturation_; +#elif EXNUMBER >= 1 + values.setState(2/*secondPhaseOnly*/); + values[transportCompIdx] = moleFraction_; +#else + values[transportCompIdx] = moleFraction_; +#endif + values[pressureIdx] = pressure_; + return values; + } + + // \} + + //! Set the coupling manager + void setCouplingManager(std::shared_ptr<CouplingManager> cm) + { couplingManager_ = cm; } + + //! Get the coupling manager + const CouplingManager& couplingManager() const + { return *couplingManager_; } + + void setTimeLoop(TimeLoopPtr timeLoop) + { timeLoop_ = timeLoop; } + +private: + bool onLeftBoundary_(const GlobalPosition &globalPos) const + { return globalPos[0] < this->fvGridGeometry().bBoxMin()[0] + eps_; } + + bool onRightBoundary_(const GlobalPosition &globalPos) const + { return globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_; } + + bool onLowerBoundary_(const GlobalPosition &globalPos) const + { return globalPos[1] < this->fvGridGeometry().bBoxMin()[1] + eps_; } + + bool onUpperBoundary_(const GlobalPosition &globalPos) const + { return globalPos[1] > this->fvGridGeometry().bBoxMax()[1] - eps_; } + + Scalar eps_; +#if EXNUMBER >= 3 + Scalar saturation_; +#else + Scalar moleFraction_; +#endif + Scalar pressure_; + + Scalar initialWaterContent_ = 0.0; + Scalar lastWaterMass_ = 0.0; + + TimeLoopPtr timeLoop_; + std::shared_ptr<CouplingManager> couplingManager_; + + std::string storageFileName_; + std::ofstream storageFile_; + bool plotFluxes_; + bool plotStorage_; + Dumux::GnuplotInterface<Scalar> gnuplotInterfaceFluxes_; + Dumux::GnuplotInterface<Scalar> gnuplotStorage_; +}; +} //end namespace + +#endif //DUMUX_DARCY_SUBPROBLEM_HH diff --git a/exercises/solution/exercise-coupling-ff-pm/turbulence/CMakeLists.txt b/exercises/solution/exercise-coupling-ff-pm/turbulence/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..e19d81c519756532c8f6fd2b7f28926723f56952 --- /dev/null +++ b/exercises/solution/exercise-coupling-ff-pm/turbulence/CMakeLists.txt @@ -0,0 +1,19 @@ +add_input_file_links() + +dune_add_test(NAME orig_turbulence_coupling_ff-pm + SOURCES ex_turbulence_coupling_ff-pm.cc + COMPILE_DEFINITIONS EXNUMBER=0 + CMD_ARGS ex_turbulence_coupling_ff-pm.input) + +dune_add_test(NAME sol_a_ex_turbulence_coupling_ff-pm + SOURCES ex_turbulence_coupling_ff-pm.cc + COMPILE_DEFINITIONS EXNUMBER=1 + CMD_ARGS ex_turbulence_coupling_ff-pm.input) + +dune_add_test(NAME sol_b_ex_turbulence_coupling_ff-pm + SOURCES ex_turbulence_coupling_ff-pm.cc + COMPILE_DEFINITIONS EXNUMBER=2 + CMD_ARGS ex_turbulence_coupling_ff-pm.input) + +# add exercise to the common target +add_dependencies(test_exercises sol_a_ex_turbulence_coupling_ff-pm sol_b_ex_turbulence_coupling_ff-pm sol_b_ex_turbulence_coupling_ff-pm) diff --git a/exercises/solution/exercise-coupling-ff-pm/turbulence/ex_turbulence_coupling_ff-pm.cc b/exercises/solution/exercise-coupling-ff-pm/turbulence/ex_turbulence_coupling_ff-pm.cc new file mode 100644 index 0000000000000000000000000000000000000000..9b02336e65a9ac918d99a2cd34c6353d66e258d7 --- /dev/null +++ b/exercises/solution/exercise-coupling-ff-pm/turbulence/ex_turbulence_coupling_ff-pm.cc @@ -0,0 +1,306 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 2 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ +/*! + * \file + * + * \brief A test problem for the isothermal coupled Stokes/Darcy problem (1p2c/2p2c) + */ +#include <config.h> + +#include <ctime> +#include <iostream> +#include <fstream> + +#include <dune/common/parallel/mpihelper.hh> +#include <dune/common/timer.hh> +#include <dune/istl/io.hh> + +#include <dumux/common/properties.hh> +#include <dumux/common/parameters.hh> +#include <dumux/common/dumuxmessage.hh> +#include <dumux/common/geometry/diameter.hh> +#include <dumux/linear/seqsolverbackend.hh> +#include <dumux/assembly/fvassembler.hh> +#include <dumux/assembly/diffmethod.hh> +#include <dumux/discretization/methods.hh> +#include <dumux/io/vtkoutputmodule.hh> +#include <dumux/io/staggeredvtkoutputmodule.hh> +#include <dumux/io/grid/gridmanager.hh> + +#include <dumux/multidomain/staggeredtraits.hh> +#include <dumux/multidomain/fvassembler.hh> +#include <dumux/multidomain/privarswitchnewtonsolver.hh> + +#include <dumux/multidomain/boundary/stokesdarcy/couplingmanager.hh> + +#include "ex_turbulence_pmproblem.hh" +#include "ex_turbulence_ffproblem.hh" + +namespace Dumux { +namespace Properties { + +SET_PROP(ZeroEqTypeTag, CouplingManager) +{ + using Traits = StaggeredMultiDomainTraits<TypeTag, TypeTag, TTAG(DarcyTwoPTwoCTypeTag)>; + using type = Dumux::StokesDarcyCouplingManager<Traits>; +}; + +SET_PROP(DarcyTwoPTwoCTypeTag, CouplingManager) +{ + using Traits = StaggeredMultiDomainTraits<TTAG(ZeroEqTypeTag), TTAG(ZeroEqTypeTag), TypeTag>; + using type = Dumux::StokesDarcyCouplingManager<Traits>; +}; + +} // end namespace Properties +} // end namespace Dumux + +int main(int argc, char** argv) try +{ + using namespace Dumux; + + // initialize MPI, finalize is done automatically on exit + const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv); + + // print dumux start message + if (mpiHelper.rank() == 0) + DumuxMessage::print(/*firstCall=*/true); + + // parse command line arguments and input file + Parameters::init(argc, argv); + + // Define the sub problem type tags + using StokesTypeTag = TTAG(ZeroEqTypeTag); + using DarcyTypeTag = TTAG(DarcyTwoPTwoCTypeTag); + + // try to create a grid (from the given grid file or the input file) + // for both sub-domains + using DarcyGridManager = Dumux::GridManager<typename GET_PROP_TYPE(DarcyTypeTag, Grid)>; + DarcyGridManager darcyGridManager; + darcyGridManager.init("Darcy"); // pass parameter group + + using StokesGridManager = Dumux::GridManager<typename GET_PROP_TYPE(StokesTypeTag, Grid)>; + StokesGridManager stokesGridManager; + stokesGridManager.init("Stokes"); // pass parameter group + + // we compute on the leaf grid view + const auto& darcyGridView = darcyGridManager.grid().leafGridView(); + const auto& stokesGridView = stokesGridManager.grid().leafGridView(); + + // create the finite volume grid geometry + using StokesFVGridGeometry = typename GET_PROP_TYPE(StokesTypeTag, FVGridGeometry); + auto stokesFvGridGeometry = std::make_shared<StokesFVGridGeometry>(stokesGridView); + stokesFvGridGeometry->update(); + using DarcyFVGridGeometry = typename GET_PROP_TYPE(DarcyTypeTag, FVGridGeometry); + auto darcyFvGridGeometry = std::make_shared<DarcyFVGridGeometry>(darcyGridView); + darcyFvGridGeometry->update(); + + using Traits = StaggeredMultiDomainTraits<StokesTypeTag, StokesTypeTag, DarcyTypeTag>; + + // the coupling manager + using CouplingManager = StokesDarcyCouplingManager<Traits>; + auto couplingManager = std::make_shared<CouplingManager>(stokesFvGridGeometry, darcyFvGridGeometry); + + // the indices + constexpr auto stokesCellCenterIdx = CouplingManager::stokesCellCenterIdx; + constexpr auto stokesFaceIdx = CouplingManager::stokesFaceIdx; + constexpr auto darcyIdx = CouplingManager::darcyIdx; + + // the problem (initial and boundary conditions) + using StokesProblem = typename GET_PROP_TYPE(StokesTypeTag, Problem); + auto stokesProblem = std::make_shared<StokesProblem>(stokesFvGridGeometry, couplingManager); + using DarcyProblem = typename GET_PROP_TYPE(DarcyTypeTag, Problem); + auto darcyProblem = std::make_shared<DarcyProblem>(darcyFvGridGeometry, couplingManager); + + // initialize the fluidsystem (tabulation) + GET_PROP_TYPE(StokesTypeTag, FluidSystem)::init(); + + // get some time loop parameters + using Scalar = typename GET_PROP_TYPE(StokesTypeTag, Scalar); + const auto tEnd = getParam<Scalar>("TimeLoop.TEnd"); + const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize"); + auto dt = getParam<Scalar>("TimeLoop.DtInitial"); + + // check if we are about to restart a previously interrupted simulation + Scalar restartTime = 0; + if (Parameters::getTree().hasKey("Restart") || Parameters::getTree().hasKey("TimeLoop.Restart")) + restartTime = getParam<Scalar>("TimeLoop.Restart"); + + // instantiate time loop + auto timeLoop = std::make_shared<TimeLoop<Scalar>>(restartTime, dt, tEnd); + timeLoop->setMaxTimeStepSize(maxDt); + + // set timeloop for the subproblems, needed for boundary value variations + stokesProblem->setTimeLoop(timeLoop); + darcyProblem->setTimeLoop(timeLoop); + + // the solution vector + Traits::SolutionVector sol; + sol[stokesCellCenterIdx].resize(stokesFvGridGeometry->numCellCenterDofs()); + sol[stokesFaceIdx].resize(stokesFvGridGeometry->numFaceDofs()); + sol[darcyIdx].resize(darcyFvGridGeometry->numDofs()); + + // apply initial solution for instationary problems + // auxiliary free flow solution vector + typename GET_PROP_TYPE(StokesTypeTag, SolutionVector) stokesSol; + stokesSol[stokesCellCenterIdx].resize(sol[stokesCellCenterIdx].size()); + stokesSol[stokesFaceIdx].resize(sol[stokesFaceIdx].size()); + stokesProblem->applyInitialSolution(stokesSol); + auto solStokesOld = stokesSol; + sol[stokesCellCenterIdx] = stokesSol[stokesCellCenterIdx]; + sol[stokesFaceIdx] = stokesSol[stokesFaceIdx]; + // TODO: update static wall properties + // TODO: update dynamic wall properties +#if EXNUMBER >= 1 + stokesProblem->updateStaticWallProperties(); + stokesProblem->updateDynamicWallProperties(stokesSol); +#endif + + darcyProblem->applyInitialSolution(sol[darcyIdx]); + auto solDarcyOld = sol[darcyIdx]; + + auto solOld = sol; + + couplingManager->init(stokesProblem, darcyProblem, sol); + + // the grid variables + using StokesGridVariables = typename GET_PROP_TYPE(StokesTypeTag, GridVariables); + auto stokesGridVariables = std::make_shared<StokesGridVariables>(stokesProblem, stokesFvGridGeometry); + stokesGridVariables->init(stokesSol, solStokesOld); + using DarcyGridVariables = typename GET_PROP_TYPE(DarcyTypeTag, GridVariables); + auto darcyGridVariables = std::make_shared<DarcyGridVariables>(darcyProblem, darcyFvGridGeometry); + darcyGridVariables->init(sol[darcyIdx], solDarcyOld); + + // intialize the vtk output module + const auto stokesName = getParam<std::string>("Problem.Name") + "_" + stokesProblem->name(); + const auto darcyName = getParam<std::string>("Problem.Name") + "_" + darcyProblem->name(); + + StaggeredVtkOutputModule<StokesTypeTag, GET_PROP_VALUE(StokesTypeTag, PhaseIdx)> stokesVtkWriter(*stokesProblem, *stokesFvGridGeometry, *stokesGridVariables, stokesSol, stokesName); + GET_PROP_TYPE(StokesTypeTag, VtkOutputFields)::init(stokesVtkWriter); + stokesVtkWriter.write(0.0); + + VtkOutputModule<DarcyTypeTag> darcyVtkWriter(*darcyProblem, *darcyFvGridGeometry, *darcyGridVariables, sol[darcyIdx], darcyName); + GET_PROP_TYPE(DarcyTypeTag, VtkOutputFields)::init(darcyVtkWriter); + darcyVtkWriter.write(0.0); + + // the assembler with time loop for instationary problem + using Assembler = MultiDomainFVAssembler<Traits, CouplingManager, DiffMethod::numeric>; + auto assembler = std::make_shared<Assembler>(std::make_tuple(stokesProblem, stokesProblem, darcyProblem), + std::make_tuple(stokesFvGridGeometry->cellCenterFVGridGeometryPtr(), + stokesFvGridGeometry->faceFVGridGeometryPtr(), + darcyFvGridGeometry), + std::make_tuple(stokesGridVariables->cellCenterGridVariablesPtr(), + stokesGridVariables->faceGridVariablesPtr(), + darcyGridVariables), + couplingManager, + timeLoop); + + // the linear solver + using LinearSolver = UMFPackBackend; + auto linearSolver = std::make_shared<LinearSolver>(); + + // the primary variable switches used by the sub models + using PriVarSwitchTuple = std::tuple<NoPrimaryVariableSwitch, NoPrimaryVariableSwitch, typename GET_PROP_TYPE(DarcyTypeTag, PrimaryVariableSwitch)>; + + // the non-linear solver + using NewtonSolver = MultiDomainPriVarSwitchNewtonSolver<Assembler, LinearSolver, CouplingManager, PriVarSwitchTuple>; + NewtonSolver nonLinearSolver(assembler, linearSolver, couplingManager); + + // time loop + timeLoop->start(); do + { + // set previous solution for storage evaluations + assembler->setPreviousSolution(solOld); + + // solve the non-linear system with time step control + nonLinearSolver.solve(sol, *timeLoop); + + // make the new solution the old solution + solOld = sol; + + // update the auxiliary free flow solution vector + stokesSol[stokesCellCenterIdx] = sol[stokesCellCenterIdx]; + stokesSol[stokesFaceIdx] = sol[stokesFaceIdx]; + +#if EXNUMBER >= 1 + // TODO: update dynamic wall properties + stokesProblem->updateDynamicWallProperties(stokesSol); +#endif + + // post time step treatment of Darcy problem + darcyProblem->postTimeStep(sol[darcyIdx], *darcyGridVariables, timeLoop->timeStepSize()); + + // advance grid variables to the next time step + stokesGridVariables->advanceTimeStep(); + darcyGridVariables->advanceTimeStep(); + + // advance to the time loop to the next step + timeLoop->advanceTimeStep(); + + // write vtk output + stokesVtkWriter.write(timeLoop->time()); + darcyVtkWriter.write(timeLoop->time()); + + // report statistics of this time step + timeLoop->reportTimeStep(); + + // set new dt as suggested by newton solver + timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize())); + + } while (!timeLoop->finished()); + + timeLoop->finalize(stokesGridView.comm()); + timeLoop->finalize(darcyGridView.comm()); + + //////////////////////////////////////////////////////////// + // finalize, print dumux message to say goodbye + //////////////////////////////////////////////////////////// + + // print dumux end message + if (mpiHelper.rank() == 0) + { + Parameters::print(); + DumuxMessage::print(/*firstCall=*/false); + } + + return 0; +} // end main +catch (Dumux::ParameterException &e) +{ + std::cerr << std::endl << e << " ---> Abort!" << std::endl; + return 1; +} +catch (Dune::DGFException & e) +{ + std::cerr << "DGF exception thrown (" << e << + "). Most likely, the DGF file name is wrong " + "or the DGF file is corrupted, " + "e.g. missing hash at end of file or wrong number (dimensions) of entries." + << " ---> Abort!" << std::endl; + return 2; +} +catch (Dune::Exception &e) +{ + std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl; + return 3; +} +catch (...) +{ + std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl; + return 4; +} diff --git a/exercises/solution/exercise-coupling-ff-pm/turbulence/ex_turbulence_coupling_ff-pm.input b/exercises/solution/exercise-coupling-ff-pm/turbulence/ex_turbulence_coupling_ff-pm.input new file mode 100644 index 0000000000000000000000000000000000000000..514cf156d55211777c2ec0980f37d1a95124867e --- /dev/null +++ b/exercises/solution/exercise-coupling-ff-pm/turbulence/ex_turbulence_coupling_ff-pm.input @@ -0,0 +1,62 @@ +[TimeLoop] +DtInitial = 1e-1 # [s] +MaxTimeStepSize = 43200 # [s] (12 hours) +TEnd = 864000 # [s] (6 days) + +[Stokes.Grid] +Positions0 = 0.0 0.25 +Positions1 = 0.25 0.5 +Grading0 = 1.0 +Grading1 = 1.0 +Cells0 = 15 +Cells1 = 20 +Verbosity = true + +[Darcy.Grid] +Positions0 = 0.0 0.25 +Positions1 = 0.0 0.25 +Cells0 = 15 +Cells1 = 10 +Grading0 = 1.0 +Grading1 = 1.0 +Verbosity = true + +[Stokes.Problem] +Name = stokes +RefVelocity = 3.5 # [m/s] +RefPressure = 1e5 # [Pa] +refMoleFrac = 0 # [-] +RefTemperature = 298.15 # [K] + +[Darcy.Problem] +Name = darcy +Pressure = 1e5 +Saturation = 0.5 # initial Sw +Temperature = 298.15 # [K] +InitPhasePresence = 3 # bothPhases + +[Darcy.SpatialParams] +Porosity = 0.41 +Permeability = 2.65e-10 +AlphaBeaversJoseph = 1.0 +Swr = 0.005 +Snr = 0.01 +VgAlpha = 6.371e-4 +VgN = 6.9 + +[Problem] +Name = ex_coupling_turbulence_ff-pm +EnableGravity = true +InterfaceDiffusionCoefficientAvg = Harmonic + +[Vtk] +AddVelocity = true +WriteFaceData = false + +[Newton] +MaxSteps = 12 +MaxRelativeShift = 1e-5 + +[Assembly] +NumericDifferenceMethod = 0 +NumericDifference.BaseEpsilon = 1e-8 diff --git a/exercises/solution/exercise-coupling-ff-pm/turbulence/ex_turbulence_ffproblem.hh b/exercises/solution/exercise-coupling-ff-pm/turbulence/ex_turbulence_ffproblem.hh new file mode 100644 index 0000000000000000000000000000000000000000..b02930b9ba255a3cd6982de4dc102e21c2635780 --- /dev/null +++ b/exercises/solution/exercise-coupling-ff-pm/turbulence/ex_turbulence_ffproblem.hh @@ -0,0 +1,409 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 2 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ + /*! + * \file + * \brief The free-flow sub problem + */ +#ifndef DUMUX_FREEFLOW1P2C_SUBPROBLEM_HH +#define DUMUX_FREEFLOW1P2C_SUBPROBLEM_HH + +#include <dune/grid/yaspgrid.hh> + +#include <dumux/material/fluidsystems/1padapter.hh> +#include <dumux/material/fluidsystems/h2oair.hh> +#include <dumux/discretization/staggered/freeflow/properties.hh> + +#if EXNUMBER >= 1 +#include <dumux/freeflow/compositional/zeroeqncmodel.hh> +#include <dumux/freeflow/rans/zeroeq/problem.hh> +#else +#include <dumux/freeflow/compositional/navierstokesncmodel.hh> +#include <dumux/freeflow/navierstokes/problem.hh> +#endif + +namespace Dumux +{ +template <class TypeTag> +class FreeFlowSubProblem; + +namespace Properties +{ +#if EXNUMBER >= 1 +NEW_TYPE_TAG(ZeroEqTypeTag, INHERITS_FROM(StaggeredFreeFlowModel, ZeroEqNCNI)); +#else +NEW_TYPE_TAG(ZeroEqTypeTag, INHERITS_FROM(StaggeredFreeFlowModel, NavierStokesNCNI)); +#endif + +// Set the grid type +SET_TYPE_PROP(ZeroEqTypeTag, Grid, Dune::YaspGrid<2, Dune::TensorProductCoordinates<typename GET_PROP_TYPE(TypeTag, Scalar), 2> >); + +// The fluid system +SET_PROP(ZeroEqTypeTag, FluidSystem) +{ + using H2OAir = FluidSystems::H2OAir<typename GET_PROP_TYPE(TypeTag, Scalar)>; + static constexpr auto phaseIdx = H2OAir::gasPhaseIdx; // simulate the air phase + using type = FluidSystems::OnePAdapter<H2OAir, phaseIdx>; +}; + +SET_INT_PROP(ZeroEqTypeTag, ReplaceCompEqIdx, 3); + +// Use formulation based on mass fractions +SET_BOOL_PROP(ZeroEqTypeTag, UseMoles, true); + +// Set the problem property +SET_TYPE_PROP(ZeroEqTypeTag, Problem, Dumux::FreeFlowSubProblem<TypeTag> ); + +SET_BOOL_PROP(ZeroEqTypeTag, EnableFVGridGeometryCache, true); +SET_BOOL_PROP(ZeroEqTypeTag, EnableGridFluxVariablesCache, true); +SET_BOOL_PROP(ZeroEqTypeTag, EnableGridVolumeVariablesCache, true); + +SET_BOOL_PROP(ZeroEqTypeTag, EnableInertiaTerms, true); +} + +/*! + * \brief The free-flow sub problem + */ +template <class TypeTag> +#if EXNUMBER >= 1 +class FreeFlowSubProblem : public ZeroEqProblem<TypeTag> +{ + using ParentType = ZeroEqProblem<TypeTag>; +#else +class FreeFlowSubProblem : public NavierStokesProblem<TypeTag> +{ + using ParentType = NavierStokesProblem<TypeTag>; +#endif + + using GridView = typename GET_PROP_TYPE(TypeTag, GridView); + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + using FluidSystem = typename GET_PROP_TYPE(TypeTag, FluidSystem); + using Indices = typename GET_PROP_TYPE(TypeTag, ModelTraits)::Indices; + using BoundaryTypes = typename GET_PROP_TYPE(TypeTag, BoundaryTypes); + + using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); + using FVElementGeometry = typename FVGridGeometry::LocalView; + using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace; + using Element = typename GridView::template Codim<0>::Entity; + using ElementVolumeVariables = typename GET_PROP_TYPE(TypeTag, GridVolumeVariables)::LocalView; + using ElementFaceVariables = typename GET_PROP_TYPE(TypeTag, GridFaceVariables)::LocalView; + using FluidState = typename GET_PROP_TYPE(TypeTag, FluidState); + + using GlobalPosition = typename Element::Geometry::GlobalCoordinate; + + using PrimaryVariables = typename GET_PROP_TYPE(TypeTag, PrimaryVariables); + using NumEqVector = typename GET_PROP_TYPE(TypeTag, NumEqVector); + + using CouplingManager = typename GET_PROP_TYPE(TypeTag, CouplingManager); + using TimeLoopPtr = std::shared_ptr<TimeLoop<Scalar>>; + + using DiffusionCoefficientAveragingType = typename StokesDarcyCouplingOptions::DiffusionCoefficientAveragingType; + + static constexpr bool useMoles = GET_PROP_TYPE(TypeTag, ModelTraits)::useMoles(); + +public: + FreeFlowSubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry, std::shared_ptr<CouplingManager> couplingManager) + : ParentType(fvGridGeometry, "Stokes"), eps_(1e-6), couplingManager_(couplingManager) + { + refVelocity_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.RefVelocity"); + refPressure_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.RefPressure"); + refMoleFrac_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.refMoleFrac"); + refTemperature_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.RefTemperature"); + + diffCoeffAvgType_ = StokesDarcyCouplingOptions::stringToEnum(DiffusionCoefficientAveragingType{}, + getParamFromGroup<std::string>(this->paramGroup(), "Problem.InterfaceDiffusionCoefficientAvg")); + } + + /*! + * \name Problem parameters + */ + // \{ + + /*! + * \brief Return the temperature within the domain in [K]. + */ + Scalar temperature() const + { return refTemperature_; } + + /*! + * \brief Return the sources within the domain. + * + * \param globalPos The global position + */ + NumEqVector sourceAtPos(const GlobalPosition &globalPos) const + { return NumEqVector(0.0); } + + // \} + /*! + * \name Boundary conditions + */ + // \{ + + /*! + * \brief Specifies which kind of boundary condition should be + * used for which equation on a given boundary segment. + * + * \param element The finite element + * \param scvf The sub control volume face + */ + BoundaryTypes boundaryTypes(const Element& element, + const SubControlVolumeFace& scvf) const + { + BoundaryTypes values; + + const auto& globalPos = scvf.center(); + + if (onLeftBoundary_(globalPos)) + { + values.setDirichlet(Indices::velocityXIdx); + values.setDirichlet(Indices::velocityYIdx); + values.setDirichlet(Indices::conti0EqIdx + 1); + values.setDirichlet(Indices::energyBalanceIdx); + } + + if (onLowerBoundary_(globalPos)) + { + values.setDirichlet(Indices::velocityXIdx); + values.setDirichlet(Indices::velocityYIdx); + values.setNeumann(Indices::conti0EqIdx); + values.setNeumann(Indices::conti0EqIdx + 1); + values.setNeumann(Indices::energyBalanceIdx); + } + + if (onUpperBoundary_(globalPos)) + { +#if EXNUMBER >=2 + values.setAllSymmetry(); +#else + values.setDirichlet(Indices::velocityXIdx); + values.setDirichlet(Indices::velocityYIdx); + values.setNeumann(Indices::conti0EqIdx); + values.setNeumann(Indices::conti0EqIdx + 1); + values.setNeumann(Indices::energyBalanceIdx); +#endif + } + + if (onRightBoundary_(globalPos)) + { + values.setDirichlet(Indices::pressureIdx); + values.setOutflow(Indices::conti0EqIdx + 1); + values.setOutflow(Indices::energyBalanceIdx); + } + + if (couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf)) + { + values.setCouplingNeumann(Indices::conti0EqIdx); + values.setCouplingNeumann(Indices::conti0EqIdx + 1); + values.setCouplingNeumann(Indices::energyBalanceIdx); + values.setCouplingNeumann(Indices::momentumYBalanceIdx); + values.setBJS(Indices::momentumXBalanceIdx); + } + return values; + } + + /*! + * \brief Evaluate the boundary conditions for a Dirichlet control volume. + * + * \param element The element + * \param scvf The subcontrolvolume face + */ + PrimaryVariables dirichletAtPos(const GlobalPosition& pos) const + { + PrimaryVariables values(0.0); + values = initialAtPos(pos); + + return values; + } + + /*! + * \brief Evaluate the boundary conditions for a Neumann control volume. + * + * \param element The element for which the Neumann boundary condition is set + * \param fvGeomentry The fvGeometry + * \param elemVolVars The element volume variables + * \param elemFaceVars The element face variables + * \param scvf The boundary sub control volume face + */ + NumEqVector neumann(const Element& element, + const FVElementGeometry& fvGeometry, + const ElementVolumeVariables& elemVolVars, + const ElementFaceVariables& elemFaceVars, + const SubControlVolumeFace& scvf) const + { + PrimaryVariables values(0.0); + if(couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf)) + { + values[Indices::momentumYBalanceIdx] = couplingManager().couplingData().momentumCouplingCondition(fvGeometry, elemVolVars, elemFaceVars, scvf); + + const auto massFlux = couplingManager().couplingData().massCouplingCondition(fvGeometry, elemVolVars, elemFaceVars, scvf, diffCoeffAvgType_); + values[Indices::conti0EqIdx] = massFlux[0]; + values[Indices::conti0EqIdx + 1] = massFlux[1]; + values[Indices::energyBalanceIdx] = couplingManager().couplingData().energyCouplingCondition(fvGeometry, elemVolVars, elemFaceVars, scvf, diffCoeffAvgType_); + } + return values; + } + + // \} + + /*! + * \brief Set the coupling manager + */ + void setCouplingManager(std::shared_ptr<CouplingManager> cm) + { couplingManager_ = cm; } + + /*! + * \brief Get the coupling manager + */ + const CouplingManager& couplingManager() const + { return *couplingManager_; } + +#if EXNUMBER >= 2 + bool isOnWall(const GlobalPosition& globalPos) const + { + return (onLowerBoundary_(globalPos)); + } +#elif EXNUMBER >= 1 + bool isOnWall(const GlobalPosition& globalPos) const + { + return (onLowerBoundary_(globalPos) || onUpperBoundary_(globalPos)); + } +#endif + + /*! + * \name Volume terms + */ + // \{ + + /*! + * \brief Evaluate the initial value for a control volume. + * + * \param globalPos The global position + */ + PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const + { + FluidState fluidState; + updateFluidStateForBC_(fluidState, refTemperature(), refPressure(), refMoleFrac()); + + const Scalar density = FluidSystem::density(fluidState, 0); + + PrimaryVariables values(0.0); + values[Indices::pressureIdx] = refPressure() + density*this->gravity()[1]*(globalPos[1] - this->fvGridGeometry().bBoxMin()[1]); + values[Indices::conti0EqIdx + 1] = refMoleFrac(); + values[Indices::velocityXIdx] = refVelocity(); + values[Indices::temperatureIdx] = refTemperature(); + + if(onUpperBoundary_(globalPos)) + values[Indices::velocityXIdx] = 0.0; + + return values; + } + + //! \brief Returns the reference velocity. + const Scalar refVelocity() const + { return refVelocity_ ;} + + //! \brief Returns the reference pressure. + const Scalar refPressure() const + { return refPressure_; } + + //! \brief Returns the reference mass fraction. + const Scalar refMoleFrac() const + { return refMoleFrac_; } + + //! \brief Returns the reference temperature. + const Scalar refTemperature() const + { return refTemperature_; } + + + void setTimeLoop(TimeLoopPtr timeLoop) + { timeLoop_ = timeLoop; } + + /*! + * \brief Returns the intrinsic permeability of required as input parameter for the Beavers-Joseph-Saffman boundary condition + */ + Scalar permeability(const SubControlVolumeFace& scvf) const + { + return couplingManager().couplingData().darcyPermeability(scvf); + } + + /*! + * \brief Returns the alpha value required as input parameter for the Beavers-Joseph-Saffman boundary condition + */ + Scalar alphaBJ(const SubControlVolumeFace& scvf) const + { + return couplingManager().problem(CouplingManager::darcyIdx).spatialParams().beaversJosephCoeffAtPos(scvf.center()); + } + + // \} + +private: + bool onLeftBoundary_(const GlobalPosition &globalPos) const + { return globalPos[0] < this->fvGridGeometry().bBoxMin()[0] + eps_; } + + bool onRightBoundary_(const GlobalPosition &globalPos) const + { return globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_; } + + bool onLowerBoundary_(const GlobalPosition &globalPos) const + { return globalPos[1] < this->fvGridGeometry().bBoxMin()[1] + eps_; } + + bool onUpperBoundary_(const GlobalPosition &globalPos) const + { return globalPos[1] > this->fvGridGeometry().bBoxMax()[1] - eps_; } + + //! \brief updates the fluid state to obtain required quantities for IC/BC + void updateFluidStateForBC_(FluidState& fluidState, const Scalar temperature, + const Scalar pressure, const Scalar moleFraction) const + { + fluidState.setTemperature(temperature); + fluidState.setPressure(0, pressure); + fluidState.setSaturation(0, 1.0); + fluidState.setMoleFraction(0, 1, moleFraction); + fluidState.setMoleFraction(0, 0, 1.0 - moleFraction); + + typename FluidSystem::ParameterCache paramCache; + paramCache.updatePhase(fluidState, 0); + + const Scalar density = FluidSystem::density(fluidState, paramCache, 0); + fluidState.setDensity(0, density); + + const Scalar molarDensity = FluidSystem::molarDensity(fluidState, paramCache, 0); + fluidState.setMolarDensity(0, molarDensity); + + const Scalar enthalpy = FluidSystem::enthalpy(fluidState, paramCache, 0); + fluidState.setEnthalpy(0, enthalpy); + } + + // the height of the free-flow domain + const Scalar height_() const + { return this->fvGridGeometry().bBoxMax()[1] - this->fvGridGeometry().bBoxMin()[1]; } + + Scalar eps_; + + Scalar refVelocity_; + Scalar refPressure_; + Scalar refMoleFrac_; + Scalar refTemperature_; + + TimeLoopPtr timeLoop_; + + std::shared_ptr<CouplingManager> couplingManager_; + + DiffusionCoefficientAveragingType diffCoeffAvgType_; +}; +} //end namespace + +#endif // DUMUX_STOKES1P2C_SUBPROBLEM_HH diff --git a/exercises/solution/exercise-coupling-ff-pm/turbulence/ex_turbulence_pmproblem.hh b/exercises/solution/exercise-coupling-ff-pm/turbulence/ex_turbulence_pmproblem.hh new file mode 100644 index 0000000000000000000000000000000000000000..bd589d6303f95b7c9ba96b94102174af24c8a129 --- /dev/null +++ b/exercises/solution/exercise-coupling-ff-pm/turbulence/ex_turbulence_pmproblem.hh @@ -0,0 +1,324 @@ +// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- +// vi: set et ts=4 sw=4 sts=4: +/***************************************************************************** + * See the file COPYING for full copying permissions. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 2 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program. If not, see <http://www.gnu.org/licenses/>. * + *****************************************************************************/ +/*! + * \file + * + * \brief The porous medium sub problem + */ +#ifndef DUMUX_DARCY2P2C_SUBPROBLEM_HH +#define DUMUX_DARCY2P2C_SUBPROBLEM_HH + +#include <dune/grid/yaspgrid.hh> + +#include <dumux/discretization/cellcentered/tpfa/properties.hh> + +#include <dumux/porousmediumflow/2p2c/model.hh> +#include <dumux/porousmediumflow/problem.hh> + +#include <dumux/material/fluidsystems/h2oair.hh> + +#include "../2pspatialparams.hh" + +namespace Dumux +{ +template <class TypeTag> +class DarcySubProblem; + +namespace Properties +{ +NEW_TYPE_TAG(DarcyTwoPTwoCTypeTag, INHERITS_FROM(CCTpfaModel, TwoPTwoCNI)); + +// Set the problem property +SET_TYPE_PROP(DarcyTwoPTwoCTypeTag, Problem, Dumux::DarcySubProblem<TypeTag>); + +// the fluid system +SET_TYPE_PROP(DarcyTwoPTwoCTypeTag, FluidSystem, FluidSystems::H2OAir<typename GET_PROP_TYPE(TypeTag, Scalar)>); + +//! Set the default formulation to pw-Sn: This can be over written in the problem. +SET_PROP(DarcyTwoPTwoCTypeTag, Formulation) +{ static constexpr auto value = TwoPFormulation::p1s0; }; + +// The gas component balance (air) is replaced by the total mass balance +SET_INT_PROP(DarcyTwoPTwoCTypeTag, ReplaceCompEqIdx, 3); + +// Set the grid type +SET_TYPE_PROP(DarcyTwoPTwoCTypeTag, Grid, Dune::YaspGrid<2, Dune::TensorProductCoordinates<typename GET_PROP_TYPE(TypeTag, Scalar), 2> >); + +SET_BOOL_PROP(DarcyTwoPTwoCTypeTag, UseMoles, true); + +SET_TYPE_PROP(DarcyTwoPTwoCTypeTag, SpatialParams, TwoPSpatialParams<TypeTag>); +} + +/*! + * \brief The porous medium sub problem + */ +template <class TypeTag> +class DarcySubProblem : public PorousMediumFlowProblem<TypeTag> +{ + using ParentType = PorousMediumFlowProblem<TypeTag>; + using GridView = typename GET_PROP_TYPE(TypeTag, GridView); + using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar); + using PrimaryVariables = typename GET_PROP_TYPE(TypeTag, PrimaryVariables); + using NumEqVector = typename GET_PROP_TYPE(TypeTag, NumEqVector); + using BoundaryTypes = typename GET_PROP_TYPE(TypeTag, BoundaryTypes); + using VolumeVariables = typename GET_PROP_TYPE(TypeTag, VolumeVariables); + using FVElementGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry)::LocalView; + using SubControlVolume = typename FVElementGeometry::SubControlVolume; + using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace; + using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry); + using ElementVolumeVariables = typename GET_PROP_TYPE(TypeTag, GridVolumeVariables)::LocalView; + + using FluidSystem = typename GET_PROP_TYPE(TypeTag, FluidSystem); + + // copy some indices for convenience + using Indices = typename GET_PROP_TYPE(TypeTag, ModelTraits)::Indices; + enum { + // primary variable indices + conti0EqIdx = Indices::conti0EqIdx, + contiWEqIdx = Indices::conti0EqIdx + FluidSystem::H2OIdx, + contiNEqIdx = Indices::conti0EqIdx + FluidSystem::AirIdx, + pressureIdx = Indices::pressureIdx, + switchIdx = Indices::switchIdx + }; + + using Element = typename GridView::template Codim<0>::Entity; + using GlobalPosition = typename Element::Geometry::GlobalCoordinate; + + using CouplingManager = typename GET_PROP_TYPE(TypeTag, CouplingManager); + using TimeLoopPtr = std::shared_ptr<TimeLoop<Scalar>>; + + using DiffusionCoefficientAveragingType = typename StokesDarcyCouplingOptions::DiffusionCoefficientAveragingType; + +public: + DarcySubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry, + std::shared_ptr<CouplingManager> couplingManager) + : ParentType(fvGridGeometry, "Darcy"), eps_(1e-7), couplingManager_(couplingManager) + { + pressure_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.Pressure"); + initialSw_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.Saturation"); + temperature_ = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.Temperature"); + initialPhasePresence_ = getParamFromGroup<int>(this->paramGroup(), "Problem.InitPhasePresence"); + + diffCoeffAvgType_ = StokesDarcyCouplingOptions::stringToEnum(DiffusionCoefficientAveragingType{}, + getParamFromGroup<std::string>(this->paramGroup(), "Problem.InterfaceDiffusionCoefficientAvg")); + } + + /*! + * \name Simulation steering + */ + // \{ + + template<class SolutionVector, class GridVariables> + void postTimeStep(const SolutionVector& curSol, + const GridVariables& gridVariables, + const Scalar timeStepSize) + + { + // compute the mass in the entire domain + Scalar massWater = 0.0; + + // bulk elements + for (const auto& element : elements(this->fvGridGeometry().gridView())) + { + auto fvGeometry = localView(this->fvGridGeometry()); + fvGeometry.bindElement(element); + + auto elemVolVars = localView(gridVariables.curGridVolVars()); + elemVolVars.bindElement(element, fvGeometry, curSol); + + for (auto&& scv : scvs(fvGeometry)) + { + const auto& volVars = elemVolVars[scv]; + for(int phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) + { + massWater += volVars.massFraction(phaseIdx, FluidSystem::H2OIdx)*volVars.density(phaseIdx) + * scv.volume() * volVars.saturation(phaseIdx) * volVars.porosity() * volVars.extrusionFactor(); + } + } + } + + std::cout << "mass of water is: " << massWater << std::endl; + } + + /*! + * \brief Return the temperature within the domain in [K]. + */ + Scalar temperature() const + { return temperature_; } + // \} + + /*! + * \name Boundary conditions + */ + // \{ + /*! + * \brief Specifies which kind of boundary condition should be + * used for which equation on a given boundary control volume. + * + * \param element The element + * \param scvf The boundary sub control volume face + */ + BoundaryTypes boundaryTypes(const Element &element, const SubControlVolumeFace &scvf) const + { + BoundaryTypes values; + values.setAllNeumann(); + + if (couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf)) + values.setAllCouplingNeumann(); + + return values; + } + + /*! + * \brief Evaluate the boundary conditions for a Dirichlet control volume. + * + * \param element The element for which the Dirichlet boundary condition is set + * \param scvf The boundary subcontrolvolumeface + * + * For this method, the \a values parameter stores primary variables. + */ + PrimaryVariables dirichlet(const Element &element, const SubControlVolumeFace &scvf) const + { + PrimaryVariables values(0.0); + values = initialAtPos(scvf.center()); + + return values; + } + + /*! + * \brief Evaluate the boundary conditions for a Neumann + * control volume. + * + * \param element The element for which the Neumann boundary condition is set + * \param fvGeomentry The fvGeometry + * \param elemVolVars The element volume variables + * \param scvf The boundary sub control volume face + * + */ + NumEqVector neumann(const Element& element, + const FVElementGeometry& fvGeometry, + const ElementVolumeVariables& elemVolVars, + const SubControlVolumeFace& scvf) const + { + NumEqVector values(0.0); + + if (couplingManager().isCoupledEntity(CouplingManager::darcyIdx, scvf)) + { + const auto massFlux = couplingManager().couplingData().massCouplingCondition(fvGeometry, elemVolVars, scvf, diffCoeffAvgType_); + + for(int i = 0; i< massFlux.size(); ++i) + values[i] = massFlux[i]; + + values[Indices::energyEqIdx] = couplingManager().couplingData().energyCouplingCondition(fvGeometry, elemVolVars, scvf, diffCoeffAvgType_); + } + + return values; + } + + // \} + + /*! + * \name Volume terms + */ + // \{ + /*! + * \brief Evaluate the source term for all phases within a given + * sub-control-volume. + * + * \param element The element for which the source term is set + * \param fvGeomentry The fvGeometry + * \param elemVolVars The element volume variables + * \param scv The subcontrolvolume + * + * For this method, the \a values variable stores the rate mass + * of a component is generated or annihilate per volume + * unit. Positive values mean that mass is created, negative ones + * mean that it vanishes. + */ + NumEqVector source(const Element &element, + const FVElementGeometry& fvGeometry, + const ElementVolumeVariables& elemVolVars, + const SubControlVolume &scv) const + { return NumEqVector(0.0); } + + // \} + + /*! + * \brief Evaluate the initial value for a control volume. + * + * For this method, the \a priVars parameter stores primary + * variables. + */ + PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const + { + PrimaryVariables values(0.0); + values.setState(initialPhasePresence_); + + values[pressureIdx] = pressure_ + 1. * this->gravity()[1] * (globalPos[1] - this->fvGridGeometry().bBoxMax()[1]); + values[switchIdx] = initialSw_; + values[Indices::temperatureIdx] = temperature_; + + return values; + } + + // \} + + /*! + * \brief Set the coupling manager + */ + void setCouplingManager(std::shared_ptr<CouplingManager> cm) + { couplingManager_ = cm; } + + /*! + * \brief Get the coupling manager + */ + const CouplingManager& couplingManager() const + { return *couplingManager_; } + + void setTimeLoop(TimeLoopPtr timeLoop) + { timeLoop_ = timeLoop; } + +private: + bool onLeftBoundary_(const GlobalPosition &globalPos) const + { return globalPos[0] < this->fvGridGeometry().bBoxMin()[0] + eps_; } + + bool onRightBoundary_(const GlobalPosition &globalPos) const + { return globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_; } + + bool onLowerBoundary_(const GlobalPosition &globalPos) const + { return globalPos[1] < this->fvGridGeometry().bBoxMin()[1] + eps_; } + + bool onUpperBoundary_(const GlobalPosition &globalPos) const + { return globalPos[1] > this->fvGridGeometry().bBoxMax()[1] - eps_; } + + Scalar pressure_; + Scalar initialSw_; + Scalar temperature_; + int initialPhasePresence_; + + TimeLoopPtr timeLoop_; + + Scalar eps_; + + std::shared_ptr<CouplingManager> couplingManager_; + DiffusionCoefficientAveragingType diffCoeffAvgType_; +}; +} //end namespace + +#endif //DUMUX_DARCY2P2C_SUBPROBLEM_HH