diff --git a/exercises/exercise-basic/2p2cmain.cc b/exercises/exercise-basic/2p2cmain.cc
deleted file mode 100644
index b9a07f08e16dce4b177694c369dea916aac494cc..0000000000000000000000000000000000000000
--- a/exercises/exercise-basic/2p2cmain.cc
+++ /dev/null
@@ -1,154 +0,0 @@
-// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
-// vi: set et ts=4 sw=4 sts=4:
-/*****************************************************************************
- *   See the file COPYING for full copying permissions.                      *
- *                                                                           *
- *   This program is free software: you can redistribute it and/or modify    *
- *   it under the terms of the GNU General Public License as published by    *
- *   the Free Software Foundation, either version 3 of the License, or       *
- *   (at your option) any later version.                                     *
- *                                                                           *
- *   This program is distributed in the hope that it will be useful,         *
- *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
- *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
- *   GNU General Public License for more details.                            *
- *                                                                           *
- *   You should have received a copy of the GNU General Public License       *
- *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
- *****************************************************************************/
-/*!
- * \file
- * \brief The main file for the 2p2c porousmediumflow problem in exercise-basic
- */
-#include <config.h>
-
-#include <iostream>
-
-#include <dumux/common/initialize.hh>
-#include <dumux/common/properties.hh>
-#include <dumux/common/parameters.hh>
-
-#include <dumux/linear/istlsolvers.hh>
-#include <dumux/linear/linearsolvertraits.hh>
-#include <dumux/linear/linearalgebratraits.hh>
-#include <dumux/nonlinear/newtonsolver.hh>
-
-#include <dumux/assembly/fvassembler.hh>
-#include <dumux/assembly/diffmethod.hh>
-
-#include <dumux/io/vtkoutputmodule.hh>
-#include <dumux/io/grid/gridmanager_yasp.hh>
-
-// The properties file, where the compile time options are defined
-#include "properties2p2c.hh"
-
-////////////////////////
-// the main function
-////////////////////////
-int main(int argc, char** argv)
-{
-    using namespace Dumux;
-
-    // define the type tag for this problem
-    using TypeTag = Properties::TTag::Injection2p2cCC;
-
-    // initialize MPI+X, finalize is done automatically on exit
-    Dumux::initialize(argc, argv);
-
-    // parse command line arguments and input file
-    Parameters::init(argc, argv);
-
-    // try to create a grid (from the given grid file or the input file)
-    GridManager<GetPropType<TypeTag, Properties::Grid>> gridManager;
-    gridManager.init();
-
-    ////////////////////////////////////////////////////////////
-    // run instationary non-linear problem on this grid
-    ////////////////////////////////////////////////////////////
-
-    // we compute on the leaf grid view
-    const auto& leafGridView = gridManager.grid().leafGridView();
-
-    // create the finite volume grid geometry
-    using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
-    auto gridGeometry = std::make_shared<GridGeometry>(leafGridView);
-
-    // the problem (initial and boundary conditions)
-    using Problem = GetPropType<TypeTag, Properties::Problem>;
-    auto problem = std::make_shared<Problem>(gridGeometry);
-
-    // the solution vector
-    using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
-    SolutionVector x;
-    problem->applyInitialSolution(x);
-    auto xOld = x;
-
-    // the grid variables
-    using GridVariables = GetPropType<TypeTag, Properties::GridVariables>;
-    auto gridVariables = std::make_shared<GridVariables>(problem, gridGeometry);
-    gridVariables->init(x);
-
-    // initialize the vtk output module
-    using IOFields = GetPropType<TypeTag, Properties::IOFields>;
-    VtkOutputModule<GridVariables, SolutionVector> vtkWriter(*gridVariables, x, problem->name());
-    using VelocityOutput = GetPropType<TypeTag, Properties::VelocityOutput>;
-    vtkWriter.addVelocityOutput(std::make_shared<VelocityOutput>(*gridVariables));
-    IOFields::initOutputModule(vtkWriter); //!< Add model specific output fields
-    vtkWriter.write(0.0);
-
-    // instantiate time loop
-    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
-    const auto tEnd = getParam<Scalar>("TimeLoop.TEnd");
-    const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize");
-    const auto dt = getParam<Scalar>("TimeLoop.DtInitial");
-    auto timeLoop = std::make_shared<TimeLoop<Scalar>>(0.0, dt, tEnd);
-    timeLoop->setMaxTimeStepSize(maxDt);
-
-    // the assembler with time loop for instationary problem
-    using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>;
-    auto assembler = std::make_shared<Assembler>(problem, gridGeometry, gridVariables, timeLoop, xOld);
-
-    // the linear solver
-    using LinearSolver = AMGBiCGSTABIstlSolver<LinearSolverTraits<GridGeometry>, LinearAlgebraTraitsFromAssembler<Assembler>>;
-    auto linearSolver = std::make_shared<LinearSolver>(gridGeometry->gridView(), gridGeometry->dofMapper());
-
-    // the non-linear solver
-//     using PrimaryVariableSwitch = GetPropType<TypeTag, Properties::PrimaryVariableSwitch>;
-    using NewtonSolver = NewtonSolver<Assembler, LinearSolver>;
-    NewtonSolver nonLinearSolver(assembler, linearSolver);
-
-    // time loop
-    timeLoop->start();
-    while (!timeLoop->finished())
-    {
-        //set time in problem (is used in time-dependent Neumann boundary condition)
-        problem->setTime(timeLoop->time()+timeLoop->timeStepSize());
-
-        // solve the non-linear system with time step control
-        nonLinearSolver.solve(x, *timeLoop);
-
-        // make the new solution the old solution
-        xOld = x;
-        gridVariables->advanceTimeStep();
-
-        // advance to the time loop to the next step
-        timeLoop->advanceTimeStep();
-
-        // report statistics of this time step
-        timeLoop->reportTimeStep();
-
-        // set new dt as suggested by the newton solver
-        timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize()));
-
-        // output to vtk
-        vtkWriter.write(timeLoop->time());
-    }
-
-    timeLoop->finalize(leafGridView.comm());
-
-    // print parameter report
-    if (leafGridView.comm().rank() == 0)
-        Parameters::print();
-
-    return 0;
-} // end main
diff --git a/exercises/exercise-basic/CMakeLists.txt b/exercises/exercise-basic/CMakeLists.txt
index e70eefef42b098146db4cbe4455c8f01c163e278..95bff476c7291c7e8d6d5dd0975e593dde0cb403 100644
--- a/exercises/exercise-basic/CMakeLists.txt
+++ b/exercises/exercise-basic/CMakeLists.txt
@@ -2,12 +2,8 @@
 dumux_add_test(NAME exercise_basic_2p
                SOURCES 2pmain.cc)
 
-# the compositional two-phase two-component simulation program
-dumux_add_test(NAME exercise_basic_2p2c
-               SOURCES 2p2cmain.cc)
-
 # here, add the two-phase non-isothermal simulation program
 
 
 # add a symlink for each input file
-add_input_file_links()
+add_input_file_links()
\ No newline at end of file
diff --git a/exercises/exercise-basic/README.md b/exercises/exercise-basic/README.md
index 5dd08af047defb938ca1016978eea869d699a7d1..839644a057ca142394ee2382976a854b7526d773 100644
--- a/exercises/exercise-basic/README.md
+++ b/exercises/exercise-basic/README.md
@@ -12,7 +12,7 @@ The aquifer is situated 2700 m below sea level and the domain size is 60 m x 40
 
 * Navigate to the directory `dumux-course/exercises/exercise-basic`
 
-This exercise deals with two problems: a two-phase immiscible problem (__2p__) and a two-phase compositional problem (__2p2c__). They both set up the same scenario with the difference that the 2p2c assumes a miscible fluid state for the two fluids (water and gaseous N$_2$) and the 2p model assumes an immiscible fluid state.
+This exercise deals with two problems: a two-phase immiscible problem (__2p__) and a two-phase non-isothermal problem (__2pni__). They both set up the same scenario with the difference that the 2pni model introduces an extra energy equation.
 
 <br><br>
 ### Task 1: Getting familiar with the code
@@ -20,11 +20,10 @@ This exercise deals with two problems: a two-phase immiscible problem (__2p__) a
 
 Locate all the files you will need for this exercise
 * The __main file__ for the __2p__ problem : `2pmain.cc`
-* The __main file__ for the __2p2c__ problem : `2p2cmain.cc`
 * The __problem file__ for the __2p__ problem: `injection2pproblem.hh`
-* The __problem file__ for the __2p2c__ problem: `injection2p2cproblem.hh`
+* The __problem file__ for the __2pni__ problem: `injection2pniproblem.hh`
 * The __properties file__ for the __2p__ problem: `properties2p.hh`
-* The __properties file__ for the __2p2c__ problem: `properties2p2c.hh`
+* The __properties file__ for the __2pni__ problem: `properties2pni.hh`
 * The shared __spatial parameters file__: `injection2pspatialparams.hh`
 * The shared __input file__: `params.input`
 
@@ -38,23 +37,22 @@ Locate all the files you will need for this exercise
 cd ../../build-cmake/exercises/exercise-basic
 ```
 
-* Compile both executables `exercise_basic_2p` and `exercise_basic_2p2c`
+* Compile the executable `exercise_basic_2p`
 
 ```bash
-make exercise_basic_2p exercise_basic_2p2c
+make exercise_basic_2p
 ```
 
-* Execute the two problems and inspect the result
+* Execute the problem and inspect the result
 
 ```bash
 ./exercise_basic_2p params.input
-./exercise_basic_2p2c params.input
 ```
 
 * you can look at the results with paraview
 
 ```bash
-paraview injection-2p2c.pvd
+paraview injection-2p.pvd
 ```
 
 <br><br>
diff --git a/exercises/exercise-basic/injection2p2cproblem.hh b/exercises/exercise-basic/injection2p2cproblem.hh
deleted file mode 100644
index 556be438c6357f77723804163bdc44cc3fbed409..0000000000000000000000000000000000000000
--- a/exercises/exercise-basic/injection2p2cproblem.hh
+++ /dev/null
@@ -1,229 +0,0 @@
-// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
-// vi: set et ts=4 sw=4 sts=4:
-/*****************************************************************************
- *   See the file COPYING for full copying permissions.                      *
- *                                                                           *
- *   This program is free software: you can redistribute it and/or modify    *
- *   it under the terms of the GNU General Public License as published by    *
- *   the Free Software Foundation, either version 3 of the License, or       *
- *   (at your option) any later version.                                     *
- *                                                                           *
- *   This program is distributed in the hope that it will be useful,         *
- *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
- *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
- *   GNU General Public License for more details.                            *
- *                                                                           *
- *   You should have received a copy of the GNU General Public License       *
- *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
- *****************************************************************************/
-/*!
- * \file
- *
- * \brief The two-phase porousmediumflow problem for exercise-basic
- */
-
-#ifndef DUMUX_EX_BASIC_PROBLEM_2P2C_HH
-#define DUMUX_EX_BASIC_PROBLEM_2P2C_HH
-
-#include <dumux/common/properties.hh>
-#include <dumux/common/boundarytypes.hh>
-#include <dumux/common/numeqvector.hh>
-#include <dumux/porousmediumflow/problem.hh>
-#include <dumux/material/binarycoefficients/h2o_n2.hh>
-
-namespace Dumux {
-
-/*!
- * \ingroup TwoPTwoCModel
- * \ingroup ImplicitTestProblems
- * \brief Gas injection problem where a gas (here  nitrogen) is injected into a fully
- *        water saturated medium. During buoyancy driven upward migration the gas
- *        passes a high temperature area.
- *
- * The domain is sized 60 m times 40 m.
- *
- * For the mass conservation equation Neumann boundary conditions are used on
- * the top, on the bottom and on the right of the domain, while Dirichlet conditions
- * apply on the left boundary.
- *
- * Gas is injected at the right boundary from 7 m to 15 m at a rate of
- * 0.001 kg/(s m), the remaining Neumann boundaries are no-flow
- * boundaries.
- *
- * At the Dirichlet boundaries a hydrostatic pressure and a gas saturation of zero a
- *
- * This problem uses the \ref TwoPModel model.
- */
-template<class TypeTag>
-class Injection2p2cProblem : public PorousMediumFlowProblem<TypeTag>
-{
-    using ParentType = PorousMediumFlowProblem<TypeTag>;
-    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
-    using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices;
-    using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
-    using BoundaryTypes = Dumux::BoundaryTypes<GetPropType<TypeTag, Properties::ModelTraits>::numEq()>;
-    using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
-    using FVElementGeometry = typename GridGeometry::LocalView;
-    using GridView = typename GridGeometry::GridView;
-    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
-    using NumEqVector = Dumux::NumEqVector<PrimaryVariables>;
-
-    static constexpr int dimWorld = GridView::dimensionworld;
-    using Element = typename GridView::template Codim<0>::Entity;
-    using GlobalPosition = typename Element::Geometry::GlobalCoordinate;
-
-public:
-    Injection2p2cProblem(std::shared_ptr<const GridGeometry> gridGeometry)
-    : ParentType(gridGeometry)
-    {
-        // initialize the tables of the fluid system
-        FluidSystem::init(/*tempMin=*/273.15,
-                /*tempMax=*/423.15,
-                /*numTemp=*/50,
-                /*pMin=*/0.0,
-                /*pMax=*/30e6,
-                /*numP=*/300);
-
-        // name of the problem and output file
-        // getParam<TYPE>("GROUPNAME.PARAMNAME") reads and sets parameter PARAMNAME
-        // of type TYPE given in the group GROUPNAME from the input file
-        name_ = getParam<std::string>("Problem.Name");
-        // depth of the aquifer, units: m
-        aquiferDepth_ = getParam<Scalar>("Problem.AquiferDepth");
-        // the duration of the injection, units: second
-        injectionDuration_ = getParam<Scalar>("Problem.InjectionDuration");
-    }
-
-    /*!
-     * \brief Returns the problem name
-     *
-     * This is used as a prefix for files generated by the simulation.
-     */
-    std::string name() const
-    { return name_+"-2p2c"; }
-
-    /*!
-     * \brief Specifies which kind of boundary condition should be
-     *        used for which equation on a given boundary segment.
-     *
-     * \param globalPos The position for which the bc type should be evaluated
-     */
-    BoundaryTypes boundaryTypesAtPos(const GlobalPosition &globalPos) const
-    {
-         BoundaryTypes bcTypes;
-        if (globalPos[0] < eps_)
-            bcTypes.setAllDirichlet();
-        else
-            bcTypes.setAllNeumann();
-
-        return bcTypes;
-    }
-
-    /*!
-     * \brief Evaluates the boundary conditions for a Dirichlet
-     *        boundary segment
-     *
-     * \param globalPos The global position
-     */
-    PrimaryVariables dirichletAtPos(const GlobalPosition &globalPos) const
-    {
-        return initialAtPos(globalPos);
-    }
-
-    /*!
-     * \brief Evaluate the boundary conditions for a Neumann
-     *        boundary segment.
-     *
-     * \param globalPos The position of the integration point of the boundary segment.
-     */
-    NumEqVector neumannAtPos(const GlobalPosition &globalPos) const
-    {
-        // initialize values to zero, i.e. no-flow Neumann boundary conditions
-        NumEqVector values(0.0);
-
-        // if we are inside the injection zone set inflow Neumann boundary conditions
-        if (injectionActive() && onInjectionBoundary(globalPos))
-        {
-            // TODO: dumux-course-task
-            //instead of setting -1e-4 here directly use totalAreaSpecificInflow_ in the computation
-
-            // inject nitrogen. negative values mean injection
-            // convert from units kg/(s*m^2) to mole/(s*m^2)
-            values[Indices::conti0EqIdx + FluidSystem::N2Idx] = -1e-4/FluidSystem::molarMass(FluidSystem::N2Idx);
-            values[Indices::conti0EqIdx + FluidSystem::H2OIdx] = 0.0;
-        }
-
-        return values;
-    }
-
-    /*!
-     * \brief Evaluate the source term for all phases within a given
-     *        sub-control-volume.
-     *
-     * \param globalPos The position for which the source term should be evaluated
-     */
-    NumEqVector sourceAtPos(const GlobalPosition &globalPos) const
-    {
-        return NumEqVector(0.0);
-    }
-
-    /*!
-     * \brief Evaluate the initial value for a control volume.
-     *
-     * \param globalPos The position for which the initial condition should be evaluated
-     */
-    PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const
-    {
-        PrimaryVariables values(0.0);
-        values.setState(Indices::firstPhaseOnly);
-        // get the water density at atmospheric conditions
-        const Scalar densityW = FluidSystem::H2O::liquidDensity(this->spatialParams().temperatureAtPos(globalPos), 1.0e5);
-
-        // assume an initially hydrostatic liquid pressure profile
-        // note: we subtract rho_w*g*h because g is defined negative
-        const Scalar pw = 1.0e5 - densityW*this->spatialParams().gravity(globalPos)[dimWorld-1]*(aquiferDepth_ - globalPos[dimWorld-1]);
-
-        // initially we have some nitrogen dissolved
-        // saturation mole fraction would be
-        // moleFracLiquidN2 = (pw + pc + p_vap^sat)/henry;
-        const Scalar moleFracLiquidN2 = pw*0.95/BinaryCoeff::H2O_N2::henry(this->spatialParams().temperatureAtPos(globalPos));
-
-        // note that because we start with a single phase system the primary variables
-        // are pl and x^w_N2. This will switch as soon after we start injecting to a two
-        // phase system so the primary variables will be pl and Sn (nonwetting saturation).
-        values[Indices::pressureIdx] = pw;
-        values[Indices::switchIdx] = moleFracLiquidN2;
-
-        return values;
-    }
-
-    //! set the time for the time dependent boundary conditions (called from main)
-    void setTime(Scalar time)
-    { time_ = time; }
-
-    //! Return true if the injection is currently active
-    bool injectionActive() const
-    { return time_ < injectionDuration_; }
-
-    //! Return true if the given position is in the injection boundary region
-    bool onInjectionBoundary(const GlobalPosition& globalPos) const
-    {
-        return globalPos[1] < 15. + eps_
-            && globalPos[1] > 7. - eps_
-            && globalPos[0] > this->gridGeometry().bBoxMax()[0] - eps_;
-    }
-
-private:
-    static constexpr Scalar eps_ = 1e-6;
-    std::string name_; //! Problem name
-    Scalar aquiferDepth_; //! Depth of the aquifer in m
-    Scalar injectionDuration_; //! Duration of the injection in seconds
-    Scalar time_;
-    //TODO: dumux-course-task
-    //define the Scalar totalAreaSpecificInflow_ here
-
-};
-
-} //end namespace Dumux
-
-#endif
diff --git a/exercises/exercise-basic/properties2p2c.hh b/exercises/exercise-basic/properties2p2c.hh
deleted file mode 100644
index dab9384cc064f50a262e6ac13032ab21bc36b7c1..0000000000000000000000000000000000000000
--- a/exercises/exercise-basic/properties2p2c.hh
+++ /dev/null
@@ -1,78 +0,0 @@
-// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
-// vi: set et ts=4 sw=4 sts=4:
-/*****************************************************************************
- *   See the file COPYING for full copying permissions.                      *
- *                                                                           *
- *   This program is free software: you can redistribute it and/or modify    *
- *   it under the terms of the GNU General Public License as published by    *
- *   the Free Software Foundation, either version 3 of the License, or       *
- *   (at your option) any later version.                                     *
- *                                                                           *
- *   This program is distributed in the hope that it will be useful,         *
- *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
- *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
- *   GNU General Public License for more details.                            *
- *                                                                           *
- *   You should have received a copy of the GNU General Public License       *
- *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
- *****************************************************************************/
-/*!
- * \file
- *
- * \brief The two-phase two-component porousmediumflow properties file for exercise-basic
- */
-
-#ifndef DUMUX_EX_BASIC_PROPERTIES_2P2C_HH
-#define DUMUX_EX_BASIC_PROPERTIES_2P2C_HH
-
-#include <dune/grid/yaspgrid.hh>
-
-#include <dumux/discretization/cctpfa.hh>
-#include <dumux/porousmediumflow/2p2c/model.hh>
-#include <dumux/material/fluidsystems/h2on2.hh>
-
-#include "injection2p2cproblem.hh"
-#include "injection2pspatialparams.hh"
-
-namespace Dumux::Properties {
-
-// Create new type tags
-namespace TTag {
-struct Injection2p2c { using InheritsFrom = std::tuple<TwoPTwoC>; };
-struct Injection2p2cCC { using InheritsFrom = std::tuple<Injection2p2c, CCTpfaModel>; };
-} // end namespace TTag
-
-// Set the grid type
-template<class TypeTag>
-struct Grid<TypeTag, TTag::Injection2p2c> { using type = Dune::YaspGrid<2>; };
-
-// Set the problem property
-template<class TypeTag>
-struct Problem<TypeTag, TTag::Injection2p2c> { using type = Injection2p2cProblem<TypeTag>; };
-
-// Set the spatial parameters
-template<class TypeTag>
-struct SpatialParams<TypeTag, TTag::Injection2p2c>
-{
-private:
-    using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
-    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
-public:
-    using type = InjectionSpatialParams<GridGeometry, Scalar>;
-};
-
-// Set fluid configuration
-template<class TypeTag>
-struct FluidSystem<TypeTag, TTag::Injection2p2c>
-{
-    using type = FluidSystems::H2ON2< GetPropType<TypeTag, Properties::Scalar>,
-                                      FluidSystems::H2ON2DefaultPolicy</*fastButSimplifiedRelations=*/ true> >;
-};
-
-// Define whether mole (true) or mass (false) fractions are used
-template<class TypeTag>
-struct UseMoles<TypeTag, TTag::Injection2p2c> { static constexpr bool value = true; };
-
-} // end namespace Dumux::Properties
-
-#endif