From 75dd9b43baa4152e15c2aa2ea2c8d118d5119bd9 Mon Sep 17 00:00:00 2001 From: Martin Schneider <martin.schneider@iws.uni-stuttgart.de> Date: Tue, 16 Jul 2024 18:15:09 +0200 Subject: [PATCH] [ex][basic][slides] Define darcys law as a velocity --- slides/problem.md | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/slides/problem.md b/slides/problem.md index caba4fa3..9c921aea 100644 --- a/slides/problem.md +++ b/slides/problem.md @@ -14,8 +14,8 @@ Mass balance equations for two fluid phases: $$ \begin{aligned} \frac{\partial \left(\phi \varrho_\alpha S_\alpha \right)}{\partial t} - - - \nabla \cdot \boldsymbol{v}_\alpha + + + \nabla \cdot \left(\varrho_\alpha \boldsymbol{v}_\alpha \right) - q_\alpha = 0, \quad \alpha \in \lbrace w, n \rbrace. \end{aligned} @@ -24,7 +24,7 @@ $$ Momentum balance equations (multiphase-phase Darcy's law): $$ \begin{aligned} -\boldsymbol{v}_\alpha = \varrho_\alpha \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\nabla\, p_\alpha - \varrho_{\alpha} \mathbf{g} \right), \quad \alpha \in \lbrace w, n \rbrace. +\boldsymbol{v}_\alpha = -\frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\nabla\, p_\alpha - \varrho_{\alpha} \mathbf{g} \right), \quad \alpha \in \lbrace w, n \rbrace. \end{aligned} $$ @@ -59,7 +59,7 @@ $$ $$ * Constitutive relations: $p_n := p_w + p_c$, $p_c := p_c(S_w)$, $k_{r\alpha}$ = $k_{r\alpha}(S_w)$ -* Physical constraint (no free space): $S_w + S_n = 1$ +* Physical constraint: $S_w + S_n = 1$ * Primary variables: $p_w$, $S_n$ (wetting phase pressure, non-wetting phase saturation) -- GitLab