diff --git a/slides/coupled_ff-pm.md b/slides/coupled_ff-pm.md
index 8c598329d3ea34f86794411401c1aa01d308349d..bfa251e754a717ca923130bd1ceb2716d34cbbef 100644
--- a/slides/coupled_ff-pm.md
+++ b/slides/coupled_ff-pm.md
@@ -2,114 +2,245 @@
 title: Coupled Freeflow and Porous Media Flow Models in DuMu<sup>X</sup>
 ---
 
-# Coupled Freeflow and Porous Media Flow Models in DuMu<sup>X</sup>
+# Motivation
+
+## Environmental and Agricultural Issues
+
+![](img/FFPM_radiation.gif){style="width: 60%; margin: auto; "}
+<figcaption align = "center">
+<font size = "2">
+Fig.1 - Evaporation of soil water (Heck et al. (2020))[^3]
+</font>
+</figcaption>
+
+* Evaporation of soil water
+* Soil salinization
+* Underground storage (e.g. CO2, atmoic waste)
+
+## Technical Issues
+
+![](img/FFPM_filter_gv_t_closeup.png){style="width: 45%; align: left;"}
+<figcaption align = "center">
+<font size = "2">
+Fig.2 - Filter (Schneider et al. (2023))[^1]
+</font>
+</figcaption>
+
+* Fuel cells
+* Filters (e.g. air)
+* Heat exchangers (e.g. CPU cooling)
+
+## Biological Issues
+
+![](img/FFPM_braintissue.png){style="width: 25%;  align: left;"}
+<figcaption align = "center">
+<font size = "2">
+Fig.3 - Brain tissue (Koch et al. (2020))[^2]
+</font>
+</figcaption>
+
+* Brain tissue
+* Leaf structure
+
+# Model Overview 
+
+## Conceptual Physical Model
+<img src=img/FFPM-PhysicalModelOverview.png width="80%">
+<figcaption align = "center">
+<font size = "2">
+Fig.4 - Coupled dynamics at the soil-atmosphere interface (Photo: Edward Coltman)
+</font>
+</figcaption>
+
+## Conceptual Physical Model
+![](img/FFPM_A02_summary_hp1.png){style="width: 80%;  align: left;"}
+<figcaption align = "center">
+<font size = "2">
+Fig.5 - Exchange processes at the free-flow porous-medium interface at different scales (Photo: Martin Schneider)
+</font>
+</figcaption>
 
-## Coupled Freeflow and Porous Media Flow Systems?
+## Mathematical Model: Overview
 
-<img src=img/FFPM-SoilWaterEvapField.png width="100%">
-<img src=img/FFPM-SaltPrecip.png width="100%">
-<img src=FFPM-FuelCellsSim.png width="100%">
+![](img/FFPM-ModelConceptColumn.png){style="width: 15%; margin: auto; float: left;"}
 
-[ETHZurich](https://emeritus.step.ethz.ch/the-step-group.html)
-[EOS-SoilSalinization](https://eos.com/blog/soil-salinization/)
-[EllerEtAl2011](https://iopscience.iop.org/article/10.1149/1.3596556#artAbst)
+<font size = "6">
 
-## Conceptual Physical model
-<img src=img/FFPM-PhysicalModelOverview.png width="100%">
+**Freeflow:**
 
-## Mathematical Model: Overview
-<img src=img/FFPM-ModelConceptColumn.png width="100%">
+* Stokes / Navier-Stokes / RANS 
+* 1-phase, n-components, non-equilibrium 
+
+**Interface condtions:**
+
+* no thickness, no storage
+* local thermodynamic equilibrium
+* continuity of fluxes
+* continuity of state variables
+
+**Porous media:**
 
-Freeflow: NS/RANS Equations, Non-isothermal, multi-component
-Porous Medium: Multi-phase Darcy, Non-isothermal, multi-component
-Coupling Conditions: Local Thermodynamic Equilibrium, continuity of fluxes
+* Darcy/ Forchheimer / Richards
+* m-phases, n-components, non-isothermal
+
+</font>
+
+## Mathematical Model: Freeflow
+<img src=img/FFPM-freeflowsymbol.png width="40%">
 
 ## Mathematical Model: Freeflow
-<img src=img/FFPM-freeflowsymbol.png width="100%">
 
-\begin{equation}
-\frac{\partial \rho_g \textbf{v}_g}{\partial t} + \nabla \cdot (\rho_g \textbf{v}_g \textbf{v}_g^T) - \DIV(\bm{\tau}_g + \bm{\tau}_{g,t})  +\DIV (p_g\textbf{I})- \rho_g \textbf{g} = 0\, .
-\end{equation}
+* Total mass balance
+$$
+\frac{\partial \rho_g \textbf{v}_g}{\partial t} + \nabla \cdot (\rho_g \textbf{v}_g \textbf{v}_g^T) - \nabla \cdot (\mathbf{\tau}_g + \mathbf{\tau}_{g,t})  +\nabla \cdot (p_g\textbf{I})- \rho_g \textbf{g} = 0 
+$$
 
-\begin{equation}
-\frac{\partial \left(\rho_g X^\kappa_g\right)}{\partial t}
-+ \nabla \cdot \left( \rho_g \textbf{v}_g X^\kappa_g
-- \mathbf{j}_{\text{diff}}^\kappa\right)
-- q^\kappa = 0\, .
-\end{equation}
+* Momentum balance
+$$
+\frac{\partial \left(\rho_g X^\kappa_g\right)}{\partial t} + \nabla \cdot \left( \rho_g \textbf{v}_g X^\kappa_g - \mathbf{j}_{\text{diff}}^\kappa\right) - q^\kappa = 0
+$$
 
-\begin{equation}
-\frac{\partial (\rho_g u_g) }{\partial t} + \DIV (\rho_g h_g \textbf{v}_g) + \sum_{i} {\DIV (h_g^\kappa \textbf{j}_{\text{diff},t}^\kappa)} - \DIV ( (\lambda_{g} + \lambda_{t})) \grad T) = 0\, ,
-\end{equation}
+* Component mass balance
+$$
+\frac{\partial (\rho_g u_g) }{\partial t} + \nabla \cdot (\rho_g h_g \textbf{v}_g) + \sum_{i} {\nabla \cdot (h_g^\kappa \textbf{j}_{\text{diff},t}^\kappa)} - \nabla \cdot ( (\lambda_{g} + \lambda_{t}) \nabla T) = 0
+$$
+
+## Mathematical Model: Porous Medium Flow
+<img src=img/FFPM-pmfsymbol.png width="40%">
 
 ## Mathematical Model: Porous Medium Flow
-<img src=img/FFPM-pmfsymbol.png width="100%">
 
-\begin{equation}
-	\sum\limits_{\alpha \in \{\text{l, g} \}}
-	\left(\phi \frac{\partial \left(\rho_\alpha S_\alpha X_\alpha^\kappa\right)}{\partial t } + \nabla \cdot \textbf{v}_\alpha\rho_\alpha X_\alpha^\kappa + \sum_\kappa \nabla \cdot \left(  \textbf{D}_{pm,\alpha}^\kappa\rho_\alpha\nabla X_\alpha^\kappa \right)\right) = 0 ,
-\end{equation}
+* Component mass balance
+$$
+\sum\limits_{\alpha \in \{\text{l, g} \}} \left(\phi \frac{\partial \left(\rho_\alpha S_\alpha X_\alpha^\kappa\right)}{\partial t } + \nabla \cdot \textbf{v}_\alpha\rho_\alpha X_\alpha^\kappa + \sum_\kappa \nabla \cdot \left(  \textbf{D}_{pm,\alpha}^\kappa\rho_\alpha\nabla X_\alpha^\kappa \right)\right) = 0 
+$$
 
-\begin{equation}\label{eq:darcy}
-	\textbf{v}_\alpha = - \frac{k_{r,\alpha}}{\mu_\alpha} K \left(\nabla p_\alpha - \rho_\alpha \textbf{g}\right) .
-\end{equation}
+* Darcy velocity
+$$
+\textbf{v}_\alpha = - \frac{k_{r,\alpha}}{\mu_\alpha} K \left(\nabla p_\alpha - \rho_\alpha \textbf{g}\right) 
+$$
+
+* Energy balance
+$$
+\sum\limits_{\alpha \in \{\text{l, g} \}}\left(\phi\frac{\partial \left(\rho_\alpha S_\alpha u_\alpha\right)}{\partial t} + \nabla \cdot \left(\rho_\alpha h_\alpha \textbf{v}_\alpha \right)\right) + \left(1-\phi\right) \frac{\partial \left(\rho_s c_{p,s}T\right)}{\partial t} - \nabla\cdot \left(\lambda_{pm} \nabla T \right) = 0 
+$$
 
-\begin{equation}
-	\sum\limits_{\alpha \in \{\text{l, g} \}}
-	\left(\phi\frac{\partial \left(\rho_\alpha S_\alpha u_\alpha\right)}{\partial t}
-	+ \nabla \cdot \left(\rho_\alpha h_\alpha \textbf{v}_\alpha \right)\right)
-	+ \left(1- \phi\right) \frac{\partial \left(\rho_s c_{p,s}T\right)}{\partial t}
-	- \nabla\cdot \left(\lambda_{pm} \nabla T \right) = 0 .
-\end{equation}
 
 ## Mathematical Model: Coupling Conditions
 
-<img src=img/FFPM-couplingsymbol.png width="100%">
+<img src=img/FFPM-couplingsymbol.png width="30%">
 
-\begin{equation}
-[(\rho_g \textbf{v}_g) \cdot \textbf{n}]^{\text{ff}} = - [(\rho_g \textbf{v}_g + \rho_w \textbf{v}_w) \cdot \textbf{n}]^{\text{pm}}\, .
-\end{equation}
+* Total mass condition
+$$
+[(\rho_g \textbf{v}_g) \cdot \textbf{n}]^{\text{ff}} = - [(\rho_g \textbf{v}_g + \rho_w \textbf{v}_w) \cdot \textbf{n}]^{\text{pm}}
+$$
 
-<img src=img/FFPM-BJS.png width="100%">
+## Mathematical Model: Coupling Conditions
+<img src=img/FFPM-BJS.png width="30%">
 
-\begin{equation}
-\left[\left(- \textbf{v}_g - \frac{\sqrt{(\textbf{K}\textbf{t}_i)\cdot \textbf{t}_i}}{\alpha_{BJ}} (\nabla \textbf{v}_g + \nabla \textbf{v}_g^T)\textbf{n} \right) \cdot \textbf{t}_i \right]^{\text{ff}} = 0\, , \quad i \in \{1, .. ,\, d-1\}\, .
-\end{equation}
+* Momentum (tangential)condition
+$$
+\left[\left(- \textbf{v}_g - \frac{\sqrt{(\textbf{K}\textbf{t}_i)\cdot \textbf{t}_i}}{\alpha_{BJ}} (\nabla \textbf{v}_g + \nabla \textbf{v}_g^T)\textbf{n} \right) \cdot \textbf{t}_i \right]^{\text{ff}} = 0\, , \quad i \in \{1, .. ,\, d-1\}\, 
+$$
 
-\begin{equation}
-[((\rho_g \textbf{v}_g \textbf{v}_g^T - (\bm{\tau}_g + \bm{\tau}_{g,t}) + p_g\textbf{I}) \textbf{n} )]^{\text{ff}} = [(p_g\textbf{I})\textbf{n}]^{\text{pm}}\, .
-\end{equation}
+## Mathematical Model: Coupling Conditions
 
-\begin{equation}
-[(\rho_g X_g^\kappa \textbf{v}_g + \textbf{j}_{\text{diff}, t}) \cdot \textbf{n}]^{\text{ff}} = - \left[\left( \sum_{\alpha} (\rho_{\alpha} X_{\alpha}^\kappa \textbf{v}_\alpha + \textbf{j}^\kappa_{\text{diff}, \alpha})\right) \cdot \textbf{n}\right]^{\text{pm}}\, .
-\end{equation}
+* Momentum (normal) condition
+$$
+[((\rho_g \textbf{v}_g \textbf{v}_g^T - (\mathbf{\tau}_g + \mathbf{\tau}_{g,t}) + p_g\textbf{I}) \textbf{n} )]^{\text{ff}} = [(p_g\textbf{I})\textbf{n}]^{\text{pm}}\, 
+$$
 
-\begin{equation}
-\left[\left(\rho_g h_g \textbf{v}_g + \sum_i h_g^\kappa \textbf{j}_{\text{diff},g}^\kappa + \lambda_{g}\grad T\right)\cdot \textbf{n}\right]^{\text{ff}} = - \left[\left( \sum_\alpha (\rho_\alpha h_\alpha \textbf{v}_\alpha + \sum_i h_\alpha^\kappa \textbf{j}_{\text{diff},\alpha}^\kappa) - \lambda_{\text{pm}}\grad T\right)\cdot \textbf{n}\right]^{\text{pm}}\, .
-\end{equation}
+* Component mass condition
+$$
+[(\rho_g X_g^\kappa \textbf{v}_g + \textbf{j}_{\text{diff}, t}) \cdot \textbf{n}]^{\text{ff}} = - \left[\left( \sum_{\alpha} (\rho_{\alpha} X_{\alpha}^\kappa \textbf{v}_\alpha + \textbf{j}^\kappa_{\text{diff}, \alpha})\right) \cdot \textbf{n}\right]^{\text{pm}}\, 
+$$
+
+* Energy condition 
+$$
+\left[\left(\rho_g h_g \textbf{v}_g + \sum_i h_g^\kappa \textbf{j}_{\text{diff},g}^\kappa + \lambda_{g}\nabla T\right)\cdot \textbf{n}\right]^{\text{ff}} = - \left[\left( \sum_\alpha (\rho_\alpha h_\alpha \textbf{v}_\alpha + \sum_i h_\alpha^\kappa \textbf{j}_{\text{diff},\alpha}^\kappa) - \lambda_{\text{pm}}\nabla T\right)\cdot \textbf{n}\right]^{\text{pm}}\, 
+$$
 
 ## Numerical Model: Coupled Model
-<img src=img/FFPM-numericalmodel.png width="100%">
+<img src=img/FFPM-numericalmodel.png width="25%">
+<figcaption align = "center">
+<font size = "2">
+Fig.6 - Discretization scheme (Fetzer, 2018)[^5]
+</font>
+</figcaption>
+
+# Example: Soil-Water Evaporation
+
+## Soil-Water Evaporation: Soil-Water Evaporation
+
+<img src=img/FFPM-TurbulentBoundaryLayer.png width="40%">
+
+## Example: Soil-Water Evaporation
+<img src=img/FFPM-SoilWaterEvapField.png width="40%">
+
+<figcaption align = "center">
+<font size = "2">
+Fig.7 - Evaporation in the water cycle (Photo: ETHZ)[^6]
+</font>
+</figcaption>
 
-## Soil-Water Evaporation: Further Concepts
+## Example: Soil-Water Evaporation
 
-<img src=img/FFPM-TurbulentBoundaryLayer.png width="100%">
+<img src=img/FFPM-evapStages.png width="60%">
 
-<img src=img/FFPM-evapStages.png width="100%">
-[OrEtAl2013](https://doi.org/10.2136/vzj2012.0163)
+<figcaption align = "center">
+<font size = "2">
+Fig.8 - Different evaporation stages (Or et al., 2013)[^4]
+</font>
+</figcaption>
 
-<img src=img/FFPM-evapReynoldsNum.png width="100%">
+## Example: Simple Evaporation Setup
 
-# Exercises:
+![](img/FFPM_evaporation_setup.png){style="width: 60%; margin: auto; float: left;"}
+
+<font size = "2">
+ Tab1: Input parameter
+</font>
+
+<font size = "5">
+
+| Parameter                   | Value         | 
+|:----------------------------|--------------:|
+| $\textbf{v}_g^{ff}$ [m/s]   | (3.5,0)$^T$   |
+| $p_g^{ff}$ [Pa]             | 1e5           | 
+| $X_g^{w,ff}$ [-]            | 0.008         | 
+| $T^{ff}$ [K]                | 298.15        | 
+| $p_g^{pm}$ [Pa]             | 1e5           | 
+| $S_l^{pm}$ [-]              | 0.98          | 
+| $T^{pm}$ [K]                | 298.15        | 
+
+</font>
+
+<figcaption align = "left">
+<font size = "2">
+Fig.9 - Model setup (Fetzer, 2018)[^5]
+</font>
+</figcaption>
+
+
+## Example: Results
+
+![](img/FFPM_evaporation.gif)
+<figcaption align = "center">
+<font size = "2">
+Fig.10 - Results: Evaporation from a simple setup (Fetzer, 2018)[^5]
+</font>
+</figcaption>
+
+# Exercises
 
 ## Exercise: Interface
 
 _Tasks_
 
-- Change flow direction for a tangetial flow as opposed to the original normal flow.
-- Introduce the beavers joseph tangential flow interface condition.
-- Redevelop the grid and introduce an undulating interface.
-- Change the inflow boundary condition to a velocity profile.
+- Change flow direction for a tangetial flow as opposed to the original normal flow
+- Introduce the beavers joseph tangential flow interface condition
+- Redevelop the grid and introduce an undulating interface
+- Change the inflow boundary condition to a velocity profile
 
 ## Exercise: Models
 
@@ -125,4 +256,39 @@ _Tasks_
 
 - Introduce a Turbulence model to the free-flow domain
 - Reduce the free-flow domain by using a symmetry condition at the upper domain boundary
-- Vary grid resolution and perform a qualitative grid convergence test.
+- Vary grid resolution and perform a qualitative grid convergence test
+
+
+
+[^1]:
+<font size = "2">
+ Schneider, M., Gläser, D., Weishaupt, K., Coltman, E., Flemisch, B., Helmig, R., Coupling staggered-grid and vertex-centered finite-volume methods for coupled porous-medium free-flow problems. Journal of Computational Physics. 2023; 112042. https://doi.org/10.1016/j.jcp.2023.112042.
+</font>
+
+[^2]: 
+<font size = "2">
+Koch, T, Flemisch, B, Helmig, R, Wiest, R, Obrist, D. A multiscale subvoxel perfusion model to estimate diffusive capillary wall conductivity in multiple sclerosis lesions from perfusion MRI data. Int J Numer Meth Biomed Engng. 2020; 36:e3298. https://doi.org/10.1002/cnm.
+</font>
+
+[^3]:
+<font size = "2">
+ Heck, K., Coltman, E., Schneider, J., & Helmig, R. (2020). Influence of radiation on evaporation rates: A numerical analysis. Water Resources Research, 56, e2020WR027332. https://doi.org/10.1029/2020WR027332 
+</font>
+
+[^4]:
+<font size = "2">
+Or, D., Lehmann, P., Shahraeeni, E. and Shokri, N. (2013), Advances in Soil Evaporation Physics—A Review. Vadose Zone Journal, 12: 1-16 vzj2012.0163. https://doi.org/10.2136/vzj2012.0163
+</font>
+
+[^5]: 
+<font size = "2">
+Fetzer, Thomas:
+Coupled Free and Porous-Medium Flow Processes Affected by Turbulence and
+Roughness – Models, Concepts and Analysis, Universität Stuttgart. - Stuttgart: Institut für Wasser- und Umweltsystemmodellierung, 2018
+</font>
+
+
+[^6]: 
+<font size = "2">
+Or, D. (2023, 31. March). https://emeritus.step.ethz.ch/the-step-group.html
+</font>
\ No newline at end of file
diff --git a/slides/img/FFPM_A02_summary_hp1.png b/slides/img/FFPM_A02_summary_hp1.png
new file mode 100644
index 0000000000000000000000000000000000000000..abba7308de49867474ff7896ca3979a8e855d8bf
Binary files /dev/null and b/slides/img/FFPM_A02_summary_hp1.png differ
diff --git a/slides/img/FFPM_braintissue.png b/slides/img/FFPM_braintissue.png
new file mode 100644
index 0000000000000000000000000000000000000000..9756118560f3349c4dd285e446d0cb9ca20258ea
Binary files /dev/null and b/slides/img/FFPM_braintissue.png differ
diff --git a/slides/img/FFPM_evaporation.gif b/slides/img/FFPM_evaporation.gif
new file mode 100644
index 0000000000000000000000000000000000000000..ed01a6d083ec1ab350ad173b14ac47fe8c271940
Binary files /dev/null and b/slides/img/FFPM_evaporation.gif differ
diff --git a/slides/img/FFPM_evaporation_setup.png b/slides/img/FFPM_evaporation_setup.png
new file mode 100644
index 0000000000000000000000000000000000000000..3fda69939b9d1061db0c48dbe463a0bc0e604969
Binary files /dev/null and b/slides/img/FFPM_evaporation_setup.png differ
diff --git a/slides/img/FFPM_filter_gv_t_closeup.png b/slides/img/FFPM_filter_gv_t_closeup.png
new file mode 100644
index 0000000000000000000000000000000000000000..567074d22c6fe856011889c38958283c530c149d
Binary files /dev/null and b/slides/img/FFPM_filter_gv_t_closeup.png differ
diff --git a/slides/img/FFPM_radiation.gif b/slides/img/FFPM_radiation.gif
new file mode 100644
index 0000000000000000000000000000000000000000..99abacdb9a78744f7d34bbfba51693592d66c983
Binary files /dev/null and b/slides/img/FFPM_radiation.gif differ