diff --git a/slides/coupled_ff-pm.md b/slides/coupled_ff-pm.md index 8c598329d3ea34f86794411401c1aa01d308349d..bfa251e754a717ca923130bd1ceb2716d34cbbef 100644 --- a/slides/coupled_ff-pm.md +++ b/slides/coupled_ff-pm.md @@ -2,114 +2,245 @@ title: Coupled Freeflow and Porous Media Flow Models in DuMu<sup>X</sup> --- -# Coupled Freeflow and Porous Media Flow Models in DuMu<sup>X</sup> +# Motivation + +## Environmental and Agricultural Issues + +{style="width: 60%; margin: auto; "} +<figcaption align = "center"> +<font size = "2"> +Fig.1 - Evaporation of soil water (Heck et al. (2020))[^3] +</font> +</figcaption> + +* Evaporation of soil water +* Soil salinization +* Underground storage (e.g. CO2, atmoic waste) + +## Technical Issues + +{style="width: 45%; align: left;"} +<figcaption align = "center"> +<font size = "2"> +Fig.2 - Filter (Schneider et al. (2023))[^1] +</font> +</figcaption> + +* Fuel cells +* Filters (e.g. air) +* Heat exchangers (e.g. CPU cooling) + +## Biological Issues + +{style="width: 25%; align: left;"} +<figcaption align = "center"> +<font size = "2"> +Fig.3 - Brain tissue (Koch et al. (2020))[^2] +</font> +</figcaption> + +* Brain tissue +* Leaf structure + +# Model Overview + +## Conceptual Physical Model +<img src=img/FFPM-PhysicalModelOverview.png width="80%"> +<figcaption align = "center"> +<font size = "2"> +Fig.4 - Coupled dynamics at the soil-atmosphere interface (Photo: Edward Coltman) +</font> +</figcaption> + +## Conceptual Physical Model +{style="width: 80%; align: left;"} +<figcaption align = "center"> +<font size = "2"> +Fig.5 - Exchange processes at the free-flow porous-medium interface at different scales (Photo: Martin Schneider) +</font> +</figcaption> -## Coupled Freeflow and Porous Media Flow Systems? +## Mathematical Model: Overview -<img src=img/FFPM-SoilWaterEvapField.png width="100%"> -<img src=img/FFPM-SaltPrecip.png width="100%"> -<img src=FFPM-FuelCellsSim.png width="100%"> +{style="width: 15%; margin: auto; float: left;"} -[ETHZurich](https://emeritus.step.ethz.ch/the-step-group.html) -[EOS-SoilSalinization](https://eos.com/blog/soil-salinization/) -[EllerEtAl2011](https://iopscience.iop.org/article/10.1149/1.3596556#artAbst) +<font size = "6"> -## Conceptual Physical model -<img src=img/FFPM-PhysicalModelOverview.png width="100%"> +**Freeflow:** -## Mathematical Model: Overview -<img src=img/FFPM-ModelConceptColumn.png width="100%"> +* Stokes / Navier-Stokes / RANS +* 1-phase, n-components, non-equilibrium + +**Interface condtions:** + +* no thickness, no storage +* local thermodynamic equilibrium +* continuity of fluxes +* continuity of state variables + +**Porous media:** -Freeflow: NS/RANS Equations, Non-isothermal, multi-component -Porous Medium: Multi-phase Darcy, Non-isothermal, multi-component -Coupling Conditions: Local Thermodynamic Equilibrium, continuity of fluxes +* Darcy/ Forchheimer / Richards +* m-phases, n-components, non-isothermal + +</font> + +## Mathematical Model: Freeflow +<img src=img/FFPM-freeflowsymbol.png width="40%"> ## Mathematical Model: Freeflow -<img src=img/FFPM-freeflowsymbol.png width="100%"> -\begin{equation} -\frac{\partial \rho_g \textbf{v}_g}{\partial t} + \nabla \cdot (\rho_g \textbf{v}_g \textbf{v}_g^T) - \DIV(\bm{\tau}_g + \bm{\tau}_{g,t}) +\DIV (p_g\textbf{I})- \rho_g \textbf{g} = 0\, . -\end{equation} +* Total mass balance +$$ +\frac{\partial \rho_g \textbf{v}_g}{\partial t} + \nabla \cdot (\rho_g \textbf{v}_g \textbf{v}_g^T) - \nabla \cdot (\mathbf{\tau}_g + \mathbf{\tau}_{g,t}) +\nabla \cdot (p_g\textbf{I})- \rho_g \textbf{g} = 0 +$$ -\begin{equation} -\frac{\partial \left(\rho_g X^\kappa_g\right)}{\partial t} -+ \nabla \cdot \left( \rho_g \textbf{v}_g X^\kappa_g -- \mathbf{j}_{\text{diff}}^\kappa\right) -- q^\kappa = 0\, . -\end{equation} +* Momentum balance +$$ +\frac{\partial \left(\rho_g X^\kappa_g\right)}{\partial t} + \nabla \cdot \left( \rho_g \textbf{v}_g X^\kappa_g - \mathbf{j}_{\text{diff}}^\kappa\right) - q^\kappa = 0 +$$ -\begin{equation} -\frac{\partial (\rho_g u_g) }{\partial t} + \DIV (\rho_g h_g \textbf{v}_g) + \sum_{i} {\DIV (h_g^\kappa \textbf{j}_{\text{diff},t}^\kappa)} - \DIV ( (\lambda_{g} + \lambda_{t})) \grad T) = 0\, , -\end{equation} +* Component mass balance +$$ +\frac{\partial (\rho_g u_g) }{\partial t} + \nabla \cdot (\rho_g h_g \textbf{v}_g) + \sum_{i} {\nabla \cdot (h_g^\kappa \textbf{j}_{\text{diff},t}^\kappa)} - \nabla \cdot ( (\lambda_{g} + \lambda_{t}) \nabla T) = 0 +$$ + +## Mathematical Model: Porous Medium Flow +<img src=img/FFPM-pmfsymbol.png width="40%"> ## Mathematical Model: Porous Medium Flow -<img src=img/FFPM-pmfsymbol.png width="100%"> -\begin{equation} - \sum\limits_{\alpha \in \{\text{l, g} \}} - \left(\phi \frac{\partial \left(\rho_\alpha S_\alpha X_\alpha^\kappa\right)}{\partial t } + \nabla \cdot \textbf{v}_\alpha\rho_\alpha X_\alpha^\kappa + \sum_\kappa \nabla \cdot \left( \textbf{D}_{pm,\alpha}^\kappa\rho_\alpha\nabla X_\alpha^\kappa \right)\right) = 0 , -\end{equation} +* Component mass balance +$$ +\sum\limits_{\alpha \in \{\text{l, g} \}} \left(\phi \frac{\partial \left(\rho_\alpha S_\alpha X_\alpha^\kappa\right)}{\partial t } + \nabla \cdot \textbf{v}_\alpha\rho_\alpha X_\alpha^\kappa + \sum_\kappa \nabla \cdot \left( \textbf{D}_{pm,\alpha}^\kappa\rho_\alpha\nabla X_\alpha^\kappa \right)\right) = 0 +$$ -\begin{equation}\label{eq:darcy} - \textbf{v}_\alpha = - \frac{k_{r,\alpha}}{\mu_\alpha} K \left(\nabla p_\alpha - \rho_\alpha \textbf{g}\right) . -\end{equation} +* Darcy velocity +$$ +\textbf{v}_\alpha = - \frac{k_{r,\alpha}}{\mu_\alpha} K \left(\nabla p_\alpha - \rho_\alpha \textbf{g}\right) +$$ + +* Energy balance +$$ +\sum\limits_{\alpha \in \{\text{l, g} \}}\left(\phi\frac{\partial \left(\rho_\alpha S_\alpha u_\alpha\right)}{\partial t} + \nabla \cdot \left(\rho_\alpha h_\alpha \textbf{v}_\alpha \right)\right) + \left(1-\phi\right) \frac{\partial \left(\rho_s c_{p,s}T\right)}{\partial t} - \nabla\cdot \left(\lambda_{pm} \nabla T \right) = 0 +$$ -\begin{equation} - \sum\limits_{\alpha \in \{\text{l, g} \}} - \left(\phi\frac{\partial \left(\rho_\alpha S_\alpha u_\alpha\right)}{\partial t} - + \nabla \cdot \left(\rho_\alpha h_\alpha \textbf{v}_\alpha \right)\right) - + \left(1- \phi\right) \frac{\partial \left(\rho_s c_{p,s}T\right)}{\partial t} - - \nabla\cdot \left(\lambda_{pm} \nabla T \right) = 0 . -\end{equation} ## Mathematical Model: Coupling Conditions -<img src=img/FFPM-couplingsymbol.png width="100%"> +<img src=img/FFPM-couplingsymbol.png width="30%"> -\begin{equation} -[(\rho_g \textbf{v}_g) \cdot \textbf{n}]^{\text{ff}} = - [(\rho_g \textbf{v}_g + \rho_w \textbf{v}_w) \cdot \textbf{n}]^{\text{pm}}\, . -\end{equation} +* Total mass condition +$$ +[(\rho_g \textbf{v}_g) \cdot \textbf{n}]^{\text{ff}} = - [(\rho_g \textbf{v}_g + \rho_w \textbf{v}_w) \cdot \textbf{n}]^{\text{pm}} +$$ -<img src=img/FFPM-BJS.png width="100%"> +## Mathematical Model: Coupling Conditions +<img src=img/FFPM-BJS.png width="30%"> -\begin{equation} -\left[\left(- \textbf{v}_g - \frac{\sqrt{(\textbf{K}\textbf{t}_i)\cdot \textbf{t}_i}}{\alpha_{BJ}} (\nabla \textbf{v}_g + \nabla \textbf{v}_g^T)\textbf{n} \right) \cdot \textbf{t}_i \right]^{\text{ff}} = 0\, , \quad i \in \{1, .. ,\, d-1\}\, . -\end{equation} +* Momentum (tangential)condition +$$ +\left[\left(- \textbf{v}_g - \frac{\sqrt{(\textbf{K}\textbf{t}_i)\cdot \textbf{t}_i}}{\alpha_{BJ}} (\nabla \textbf{v}_g + \nabla \textbf{v}_g^T)\textbf{n} \right) \cdot \textbf{t}_i \right]^{\text{ff}} = 0\, , \quad i \in \{1, .. ,\, d-1\}\, +$$ -\begin{equation} -[((\rho_g \textbf{v}_g \textbf{v}_g^T - (\bm{\tau}_g + \bm{\tau}_{g,t}) + p_g\textbf{I}) \textbf{n} )]^{\text{ff}} = [(p_g\textbf{I})\textbf{n}]^{\text{pm}}\, . -\end{equation} +## Mathematical Model: Coupling Conditions -\begin{equation} -[(\rho_g X_g^\kappa \textbf{v}_g + \textbf{j}_{\text{diff}, t}) \cdot \textbf{n}]^{\text{ff}} = - \left[\left( \sum_{\alpha} (\rho_{\alpha} X_{\alpha}^\kappa \textbf{v}_\alpha + \textbf{j}^\kappa_{\text{diff}, \alpha})\right) \cdot \textbf{n}\right]^{\text{pm}}\, . -\end{equation} +* Momentum (normal) condition +$$ +[((\rho_g \textbf{v}_g \textbf{v}_g^T - (\mathbf{\tau}_g + \mathbf{\tau}_{g,t}) + p_g\textbf{I}) \textbf{n} )]^{\text{ff}} = [(p_g\textbf{I})\textbf{n}]^{\text{pm}}\, +$$ -\begin{equation} -\left[\left(\rho_g h_g \textbf{v}_g + \sum_i h_g^\kappa \textbf{j}_{\text{diff},g}^\kappa + \lambda_{g}\grad T\right)\cdot \textbf{n}\right]^{\text{ff}} = - \left[\left( \sum_\alpha (\rho_\alpha h_\alpha \textbf{v}_\alpha + \sum_i h_\alpha^\kappa \textbf{j}_{\text{diff},\alpha}^\kappa) - \lambda_{\text{pm}}\grad T\right)\cdot \textbf{n}\right]^{\text{pm}}\, . -\end{equation} +* Component mass condition +$$ +[(\rho_g X_g^\kappa \textbf{v}_g + \textbf{j}_{\text{diff}, t}) \cdot \textbf{n}]^{\text{ff}} = - \left[\left( \sum_{\alpha} (\rho_{\alpha} X_{\alpha}^\kappa \textbf{v}_\alpha + \textbf{j}^\kappa_{\text{diff}, \alpha})\right) \cdot \textbf{n}\right]^{\text{pm}}\, +$$ + +* Energy condition +$$ +\left[\left(\rho_g h_g \textbf{v}_g + \sum_i h_g^\kappa \textbf{j}_{\text{diff},g}^\kappa + \lambda_{g}\nabla T\right)\cdot \textbf{n}\right]^{\text{ff}} = - \left[\left( \sum_\alpha (\rho_\alpha h_\alpha \textbf{v}_\alpha + \sum_i h_\alpha^\kappa \textbf{j}_{\text{diff},\alpha}^\kappa) - \lambda_{\text{pm}}\nabla T\right)\cdot \textbf{n}\right]^{\text{pm}}\, +$$ ## Numerical Model: Coupled Model -<img src=img/FFPM-numericalmodel.png width="100%"> +<img src=img/FFPM-numericalmodel.png width="25%"> +<figcaption align = "center"> +<font size = "2"> +Fig.6 - Discretization scheme (Fetzer, 2018)[^5] +</font> +</figcaption> + +# Example: Soil-Water Evaporation + +## Soil-Water Evaporation: Soil-Water Evaporation + +<img src=img/FFPM-TurbulentBoundaryLayer.png width="40%"> + +## Example: Soil-Water Evaporation +<img src=img/FFPM-SoilWaterEvapField.png width="40%"> + +<figcaption align = "center"> +<font size = "2"> +Fig.7 - Evaporation in the water cycle (Photo: ETHZ)[^6] +</font> +</figcaption> -## Soil-Water Evaporation: Further Concepts +## Example: Soil-Water Evaporation -<img src=img/FFPM-TurbulentBoundaryLayer.png width="100%"> +<img src=img/FFPM-evapStages.png width="60%"> -<img src=img/FFPM-evapStages.png width="100%"> -[OrEtAl2013](https://doi.org/10.2136/vzj2012.0163) +<figcaption align = "center"> +<font size = "2"> +Fig.8 - Different evaporation stages (Or et al., 2013)[^4] +</font> +</figcaption> -<img src=img/FFPM-evapReynoldsNum.png width="100%"> +## Example: Simple Evaporation Setup -# Exercises: +{style="width: 60%; margin: auto; float: left;"} + +<font size = "2"> + Tab1: Input parameter +</font> + +<font size = "5"> + +| Parameter | Value | +|:----------------------------|--------------:| +| $\textbf{v}_g^{ff}$ [m/s] | (3.5,0)$^T$ | +| $p_g^{ff}$ [Pa] | 1e5 | +| $X_g^{w,ff}$ [-] | 0.008 | +| $T^{ff}$ [K] | 298.15 | +| $p_g^{pm}$ [Pa] | 1e5 | +| $S_l^{pm}$ [-] | 0.98 | +| $T^{pm}$ [K] | 298.15 | + +</font> + +<figcaption align = "left"> +<font size = "2"> +Fig.9 - Model setup (Fetzer, 2018)[^5] +</font> +</figcaption> + + +## Example: Results + + +<figcaption align = "center"> +<font size = "2"> +Fig.10 - Results: Evaporation from a simple setup (Fetzer, 2018)[^5] +</font> +</figcaption> + +# Exercises ## Exercise: Interface _Tasks_ -- Change flow direction for a tangetial flow as opposed to the original normal flow. -- Introduce the beavers joseph tangential flow interface condition. -- Redevelop the grid and introduce an undulating interface. -- Change the inflow boundary condition to a velocity profile. +- Change flow direction for a tangetial flow as opposed to the original normal flow +- Introduce the beavers joseph tangential flow interface condition +- Redevelop the grid and introduce an undulating interface +- Change the inflow boundary condition to a velocity profile ## Exercise: Models @@ -125,4 +256,39 @@ _Tasks_ - Introduce a Turbulence model to the free-flow domain - Reduce the free-flow domain by using a symmetry condition at the upper domain boundary -- Vary grid resolution and perform a qualitative grid convergence test. +- Vary grid resolution and perform a qualitative grid convergence test + + + +[^1]: +<font size = "2"> + Schneider, M., Gläser, D., Weishaupt, K., Coltman, E., Flemisch, B., Helmig, R., Coupling staggered-grid and vertex-centered finite-volume methods for coupled porous-medium free-flow problems. Journal of Computational Physics. 2023; 112042. https://doi.org/10.1016/j.jcp.2023.112042. +</font> + +[^2]: +<font size = "2"> +Koch, T, Flemisch, B, Helmig, R, Wiest, R, Obrist, D. A multiscale subvoxel perfusion model to estimate diffusive capillary wall conductivity in multiple sclerosis lesions from perfusion MRI data. Int J Numer Meth Biomed Engng. 2020; 36:e3298. https://doi.org/10.1002/cnm. +</font> + +[^3]: +<font size = "2"> + Heck, K., Coltman, E., Schneider, J., & Helmig, R. (2020). Influence of radiation on evaporation rates: A numerical analysis. Water Resources Research, 56, e2020WR027332. https://doi.org/10.1029/2020WR027332 +</font> + +[^4]: +<font size = "2"> +Or, D., Lehmann, P., Shahraeeni, E. and Shokri, N. (2013), Advances in Soil Evaporation Physics—A Review. Vadose Zone Journal, 12: 1-16 vzj2012.0163. https://doi.org/10.2136/vzj2012.0163 +</font> + +[^5]: +<font size = "2"> +Fetzer, Thomas: +Coupled Free and Porous-Medium Flow Processes Affected by Turbulence and +Roughness – Models, Concepts and Analysis, Universität Stuttgart. - Stuttgart: Institut für Wasser- und Umweltsystemmodellierung, 2018 +</font> + + +[^6]: +<font size = "2"> +Or, D. (2023, 31. March). https://emeritus.step.ethz.ch/the-step-group.html +</font> \ No newline at end of file diff --git a/slides/img/FFPM_A02_summary_hp1.png b/slides/img/FFPM_A02_summary_hp1.png new file mode 100644 index 0000000000000000000000000000000000000000..abba7308de49867474ff7896ca3979a8e855d8bf Binary files /dev/null and b/slides/img/FFPM_A02_summary_hp1.png differ diff --git a/slides/img/FFPM_braintissue.png b/slides/img/FFPM_braintissue.png new file mode 100644 index 0000000000000000000000000000000000000000..9756118560f3349c4dd285e446d0cb9ca20258ea Binary files /dev/null and b/slides/img/FFPM_braintissue.png differ diff --git a/slides/img/FFPM_evaporation.gif b/slides/img/FFPM_evaporation.gif new file mode 100644 index 0000000000000000000000000000000000000000..ed01a6d083ec1ab350ad173b14ac47fe8c271940 Binary files /dev/null and b/slides/img/FFPM_evaporation.gif differ diff --git a/slides/img/FFPM_evaporation_setup.png b/slides/img/FFPM_evaporation_setup.png new file mode 100644 index 0000000000000000000000000000000000000000..3fda69939b9d1061db0c48dbe463a0bc0e604969 Binary files /dev/null and b/slides/img/FFPM_evaporation_setup.png differ diff --git a/slides/img/FFPM_filter_gv_t_closeup.png b/slides/img/FFPM_filter_gv_t_closeup.png new file mode 100644 index 0000000000000000000000000000000000000000..567074d22c6fe856011889c38958283c530c149d Binary files /dev/null and b/slides/img/FFPM_filter_gv_t_closeup.png differ diff --git a/slides/img/FFPM_radiation.gif b/slides/img/FFPM_radiation.gif new file mode 100644 index 0000000000000000000000000000000000000000..99abacdb9a78744f7d34bbfba51693592d66c983 Binary files /dev/null and b/slides/img/FFPM_radiation.gif differ