diff --git a/slides/intro.md b/slides/intro.md index 4774dd35227561b2b1855b03d6cc75375bd125a3..225eefa977024caefc85e9413806bcc6caf099c5 100644 --- a/slides/intro.md +++ b/slides/intro.md @@ -3,17 +3,18 @@ title: Introduction to DuMu^x^ subtitle: Overview and Available Models --- + # Table of Contents ## Table of Contents -1. [History and Structure](#structure-and-development-history) -2. [Available Models](#available-models) +1. [Structure and Development History](#structure-and-development-history) +2. [Mathematical Models](#available-models) 3. [Spatial Discretization](#spatial-discretization) 4. [Model Components](#model-components) 5. [Simulation Flow](#simulation-flow) -# Structure and development history +# Structure and Development History ## DuMu^x^ is a DUNE module @@ -47,6 +48,7 @@ subtitle: Overview and Available Models ## Applications * **Successfully applied** to + * gas (CO~2~, H~2~, CH~4~, ...) storage scenarios * environmental remediation problems * transport of substances in biological tissue @@ -58,11 +60,11 @@ subtitle: Overview and Available Models ## DuMu^x^ Modules -* [**dumux-lecture**](https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-lecture): example applications for lectures offered by LH2, Uni Stuttgart +* [**dumux-lecture**](https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-lecture): example applications for lectures offered by LH^2^, Uni Stuttgart * [**dumux-pub/---**](https://git.iws.uni-stuttgart.de/dumux-pub): code and data accompanying a publication (reproduce and archive results) * [**dumux-appl/---**](https://git.iws.uni-stuttgart.de/dumux-appl): Various application modules (many not publicly available, e.g. ongoing research) -## Development history +## Development History * 01/2007: Development **starts**. * 07/2009: Release **1.0**. @@ -88,7 +90,7 @@ We acknowledge funding that supported the development of DuMu^x^ in past and pre ## Downloads and Publications * More than 1000 unique release **downloads**. -* More than 200 peer-reviewed **publications** and PhD theses using DuMu^x^ +* More than 200 peer-reviewed [**publications**](https://puma.ub.uni-stuttgart.de/group/dumux/dumuxarticle?resourcetype=publication&items=1000&sortPage=year) and [PhD theses](https://puma.ub.uni-stuttgart.de/group/dumux/dumuxphd?resourcetype=publication&items=1000&sortPage=year) using DuMu^x^. ## Evolution of C++ Files @@ -135,117 +137,148 @@ Preimplemented models: * Describes the advective flux in porous media on the macro-scale -* One-phase flow +* Single-phase flow - $v = - \frac{\mathbf{K}}{\mu} \left(\textbf{grad}\, p - \varrho \mathbf{g} \right)$ + $$\mathbf{v} = - \frac{\mathbf{K}}{\mu} \left(\textbf{grad}\, p - \varrho \mathbf{g} \right)$$ * Multi-phase flow (phase $\alpha$) - $v_\alpha = - \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\textbf{grad}\, p_\alpha - \varrho_\alpha \mathbf{g} \right)$ - where $k_{r\alpha}(S_\alpha)$ is the relative permeability, a function of saturation $S_\alpha$ + $$\mathbf{v}_\alpha = - \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\textbf{grad}\, p_\alpha - \varrho_\alpha \mathbf{g} \right)$$ + where $k_{r\alpha}(S_\alpha)$ is the relative permeability, a function of saturation $S_\alpha$. + +* For non-creeping flow, Forchheimer's law is available as an alternative. -## 1p -- single-phase +## 1p -- Single-Phase -* Uses standard Darcy approach for the conservation of momentum +* Uses standard Darcy approach for the conservation of momentum by default * Mass continuity equation - $\frac{\partial\left( \phi \varrho \right)}{\partial t} + \text{div} \left\lbrace - \varrho \frac{\textbf{K}}{\mu} \left(\textbf{grad}\, p - \varrho \textbf{g} \right) \right\rbrace = q$ + $$\frac{\partial\left( \phi \varrho \right)}{\partial t} + \text{div} \left( \varrho \mathbf{v} \right) = q$$ * Primary variable: $p$ -## 1pnc -- single-phase, multi-component +* Further details can be found in the corresponding [documentation](https://dumux.org/docs/doxygen/master/group___one_p_model.html) + +## 1pnc -- Single-Phase, Multi-Component + +* Uses standard Darcy approach for the conservation of momentum by default +* Transport of component $\kappa \in \{\text{H2O}, \text{Air}, ...\}$ -* Uses standard Darcy approach for the conservation of momentum -* Transport of component $\kappa \in \{w, a, ...\}$ + $$\frac{\partial\left( \phi \varrho X^\kappa \right)}{\partial t} + \text{div} \left( \varrho X^\kappa \mathbf{v} - \varrho D^\kappa_\text{pm} \textbf{grad} X^\kappa \right) = q$$ - $\frac{\partial\left( \phi \varrho X^\kappa \right)}{\partial t} - \text{div} \left\lbrace \varrho X^\kappa \frac{\textbf {K}}{\mu} \left(\textbf{grad}\, p - \varrho \textbf{g} \right) + \varrho D^\kappa_\text{pm} \textbf{grad} X^\kappa \right\rbrace = q$ +* Closure relation: $\sum_\kappa X^\kappa = 1$ +* Primary variables: $p$ and $X^\kappa$ -* Primary variables: $p$ and $x^\kappa$ +* Further details can be found in the corresponding [documentation](https://dumux.org/docs/doxygen/master/group___one_p_n_c_model.html) -## 1pncmin -- with mineralization +## 1pncmin -- with Fluid-Solid Phase Change -* Transport equation for each component $\kappa \in \{w, a, ...\}$ +* Transport equation for each component $\kappa \in \{\text{H2O}, \text{Air}, ...\}$ - $\frac{\partial \left( \varrho_f X^\kappa \phi \right)}{\partial t}$ - $- \text{div} \left\lbrace \varrho_f X^\kappa \frac{k_{r}}{\mu} \mathbf{K} \left(\textbf{grad}\, p - \varrho_f \mathbf{g} \right) \right\rbrace$ - $- \text{div} \left\lbrace \mathbf{D_{pm}^\kappa} \varrho_f \textbf{grad}\, X^\kappa \right\rbrace = q_\kappa$ + $$\frac{\partial \left( \varrho_f X^\kappa \phi \right)}{\partial t} + + \text{div} \left( \varrho_f X^\kappa \mathbf{v} - \mathbf{D_\text{pm}^\kappa} \varrho_f \textbf{grad}\, X^\kappa \right) = q_\kappa$$ -* Mass balance solid or mineral phases +* Mass balance solid phases - $\frac{\partial \left(\varrho_\lambda \phi_\lambda \right)}{\partial t} = q_\lambda$ + $$\frac{\partial \left(\varrho_\lambda \phi_\lambda \right)}{\partial t} = q_\lambda$$ -* Primary variables: $p$, $x^k$ and $\phi_\lambda$ +* Primary variables: $p$, $X^k$ and $\phi_\lambda$ -## 2p -- two-phase +* Further details can be found in the corresponding [documentation](https://dumux.org/docs/doxygen/master/group___one_p_n_c_min_model.html) -* Uses standard multi-phase Darcy approach for the conservation of momentum -* Conservation of the phase mass of phase $\alpha \in \{w, n\}$ +## 2p -- Two-Phase Immiscible - $\frac{\partial \left( \phi \varrho_\alpha S_\alpha \right)}{\partial t} - \text{div} \left\{\varrho_\alpha \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\textbf{grad}\, p_\alpha - \varrho_\alpha \mathbf{g} \right) \right\} = q_\alpha$ +* Uses standard multi-phase Darcy approach for the conservation of momentum by default +* Conservation of the phase mass of phase $\alpha \in \{\text{w}, \text{n}\}$ -* Constitutive relation: $p_c := p_n - p_w = p_c(S_w)$, $k_{r\alpha}$ = $k_{r\alpha}(S_w)$ -* Physical constraint (no free space): $S_w + S_n = 1$ -* Primary variables: $p_w$, $S_n$ or $p_n$, $S_w$ + $$\frac{\partial \left( \phi \varrho_\alpha S_\alpha \right)}{\partial t} + \text{div} \left(\varrho_\alpha \mathbf{v}_\alpha \right) = q_\alpha$$ -## 2pnc +* Constitutive relations: $p_\text{c} := p_\text{n} - p_\text{w} = p_\text{c}(S_\text{w})$, $k_{r\alpha}$ = $k_{r\alpha}(S_\text{w})$ +* Physical constraint (void space filled with fluid phases): $S_\text{w} + S_\text{n} = 1$ +* Primary variables: $p_\text{w}$, $S_\text{n}$ or $p_\text{n}$, $S_\text{w}$ -* Transport equation for each component $\kappa \in \{w, n, ...\}$ in phase $\alpha \in \{w, n\}$ +* Further details can be found in the corresponding [documentation](https://dumux.org/docs/doxygen/master/group___two_p_model.html) - $\begin{aligned}\frac{\partial \left( \sum_\alpha \varrho_\alpha X_\alpha^\kappa \phi S_\alpha \right)}{\partial t} &- \sum_\alpha \text{div} \left\lbrace \varrho_\alpha X_\alpha^\kappa \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left( \textbf{grad}\, p_\alpha - \varrho_\alpha \mathbf{g} \right) \right\rbrace \\ - &- \sum_\alpha \text{div} \left\lbrace \mathbf{D_{\alpha, pm}^\kappa} \varrho_\alpha \textbf{grad}\, X^\kappa_\alpha \right\rbrace = \sum_\alpha q_\alpha^\kappa \end{aligned}$ +## 2pnc -- Two-Phase Compositional -* Constitutive relation: $p_c := p_n - p_w = p_c(S_w)$, $k_{r\alpha}$ = $k_{r\alpha}(S_w)$ -* Physical constraints: $S_w + S_n = 1$ and $\sum_\kappa X_\alpha^\kappa = 1$ +* Transport equation for each component $\kappa \in \{\text{H2O}, \text{Air}, ...\}$ in phase $\alpha \in \{\text{w}, \text{n}\}$ + + $$\begin{aligned}\frac{\partial \left( \sum_\alpha \varrho_\alpha X_\alpha^\kappa \phi S_\alpha \right)}{\partial t} &+ \sum_\alpha \text{div} \left( \varrho_\alpha X_\alpha^\kappa \mathbf{v}_\alpha - \mathbf{D_{\alpha, pm}^\kappa} \varrho_\alpha \textbf{grad}\, X^\kappa_\alpha \right) = \sum_\alpha q_\alpha^\kappa \end{aligned}$$ + +* Constitutive relation: $p_\text{c} := p_\text{n} - p_\text{w} = p_\text{c}(S_\text{w})$, $k_{r\alpha}$ = $k_{r\alpha}(S_\text{w})$ +* Physical constraints: $S_\text{w} + S_\text{n} = 1$ and $\sum_\kappa X_\alpha^\kappa = 1$ * Primary variables: depending on the phase state +* Further details can be found in the corresponding [documentation](https://dumux.org/docs/doxygen/master/group___two_p_n_c_model.html) + ## 2pncmin -* Transport equation for each component $\kappa \in \{w, n, ...\}$ in phase $\alpha \in \{w, n\}$ +* Transport equation for each component $\kappa \in \{\text{H2O}, \text{Air}, ...\}$ + + $$\begin{aligned}\frac{\partial \left( \sum_\alpha \varrho_\alpha X_\alpha^\kappa \phi S_\alpha \right)}{\partial t} &+ \sum_\alpha \text{div} \left( \varrho_\alpha X_\alpha^\kappa \mathbf{v}_\alpha - \mathbf{D_{\alpha, pm}^\kappa} \varrho_\alpha \textbf{grad}\, X^\kappa_\alpha \right) = \sum_\alpha q_\alpha^\kappa \end{aligned}$$ + +* Mass balance solid phases - $\begin{aligned}\frac{\partial \left( \sum_\alpha \varrho_\alpha X_\alpha^\kappa \phi S_\alpha \right)}{\partial t} &- \sum_\alpha \text{div} \left\lbrace \varrho_\alpha X_\alpha^\kappa \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left( \textbf{grad}\, p_\alpha - \varrho_\alpha \mathbf{g} \right) \right\rbrace \\ - &- \sum_\alpha \text{div} \left\lbrace \mathbf{D_{\alpha, pm}^\kappa} \varrho_\alpha \textbf{grad}\, X^\kappa_\alpha \right\rbrace = \sum_\alpha q_\alpha^\kappa \end{aligned}$ + $$\frac{\partial \left(\varrho_\lambda \phi_\lambda \right)}{\partial t} = q_\lambda \quad \forall \lambda \in \Lambda$$ +for a set of solid phases $\Lambda$ each with volume fraction $\varrho_\lambda$ -* Mass balance solid or mineral phases +* Source term models **dissolution/precipiation/phase transition** fluid ↔ solid - $\frac{\partial \left(\varrho_\lambda \phi_\lambda \right)}{\partial t} = q_\lambda \quad \forall \lambda \in \Lambda$ +* Further details can be found in the corresponding [documentation](https://dumux.org/docs/doxygen/master/group___two_p_n_c_min_model.html) -* for a set of solid phases $\Lambda$ each with volume fraction $\varrho_\lambda$ -* source term models **dissolution** / **precipiation** / **phase transition** fluid ↔ solid +## 3p -- Three-Phase Immiscible -## 3p -- three-phase +* Uses standard multi-phase Darcy approach for the conservation of momentum by default +* Conservation of the phase mass of phase $\alpha \in \{\text{w}, \text{g}, \text{n}\}$ -* Uses standard multi-phase Darcy approach for the conservation of momentum -* Conservation of the phase mass of phase $\alpha \in \{w, g, n\}$ + $$\frac{\partial \left( \phi \varrho_\alpha S_\alpha \right)}{\partial t} - \text{div} \left( \varrho_\alpha \mathbf{v}_\alpha \right) = q_\alpha$$ - $\frac{\partial \left( \phi \varrho_\alpha S_\alpha \right)}{\partial t} - \text{div} \left\lbrace \varrho_\alpha \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\textbf{grad}\, p_\alpha - \varrho_\alpha \mathbf{g} \right) \right\rbrace = q_\alpha$ +* Physical constraint: $S_\text{w} + S_\text{n} + S_g = 1$ +* Primary variables: $p_\text{g}$, $S_\text{w}$, $S_\text{n}$ -* Physical constraint: $S_w + S_n + S_g = 1$ -* Primary variables: $p_g$, $S_w$, $S_n$ +* Further details can be found in the corresponding [documentation](https://dumux.org/docs/doxygen/master/group___three_p_model.html) -## 3p3c +## 3p3c -- Three-Phase Compositional -* Transport equation for each component $\kappa \in \{w, a, c\}$ in phase $\alpha \in \{w, g, n\}$ +* Transport equation for each component $\kappa \in \{\text{H2O}, \text{Air}, \text{NAPL}\}$ in phase $\alpha \in \{\text{w}, \text{g}, \text{n}\}$ - $\begin{aligned}\frac{\partial \left( \phi \sum_\alpha \varrho_{\alpha,mol} x_\alpha^\kappa S_\alpha \right)}{\partial t} - &- \sum_\alpha \text{div} \left\lbrace \frac{k_{r\alpha}}{\mu_\alpha} \varrho_{\alpha,mol} x_\alpha^\kappa \mathbf{K} \left(\textbf{grad}\, p_\alpha - \varrho_{\alpha,mass} \mathbf{g} \right) \right\rbrace \\ - &- \sum_\alpha \text{div} \left\lbrace D_\text{pm}^\kappa \frac{1}{M_\kappa} \varrho_\alpha \textbf{grad} X^\kappa_{\alpha} \right\rbrace = q^\kappa \end{aligned}$ + $$\begin{aligned}\frac{\partial \left( \phi \sum_\alpha \varrho_{\alpha,\text{mol}} x_\alpha^\kappa S_\alpha \right)}{\partial t} + &+ \sum_\alpha \text{div} \left( \varrho_{\alpha,\text{mol}} x_\alpha^\kappa \mathbf{v}_\alpha - D_\text{pm}^\kappa \frac{1}{M_\kappa} \varrho_\alpha \textbf{grad} X^\kappa_{\alpha} \right) = q^\kappa \end{aligned}$$ * Physical constraints: $\sum_\alpha S_\alpha = 1$ and $\sum_\kappa x^\kappa_\alpha = 1$ * Primary variables: depend on the locally present fluid phases -## Non-Isothermal (equilibrium) +* Further details can be found in the corresponding [documentation](https://dumux.org/docs/doxygen/master/group___three_p_three_c_model.html) + +## Other Porous-Medium Flow Models + +* For other porous-medium flow models, we refer to the Doxygen documentation: + + - [2p1c](https://dumux.org/docs/doxygen/master/group___two_p_one_c_model.html) + - [2p2c](https://dumux.org/docs/doxygen/master/group___two_p_two_c_model.html) + - [3pwateroil](https://dumux.org/docs/doxygen/master/group___three_p_water_oil_model.html) + - [co2](https://dumux.org/docs/doxygen/master/group___c_o2_model.html) + - [mpnc](https://dumux.org/docs/doxygen/master/group___m_p_n_c_model.html) + - [nonequilibrium](https://dumux.org/docs/doxygen/master/group___non_equilibrium_model.html) + - [richards](https://dumux.org/docs/doxygen/master/group___richards_model.html) + - [richardsnc](https://dumux.org/docs/doxygen/master/group___richards_n_c_model.html) + - [tracer](https://dumux.org/docs/doxygen/master/group___tracer_model.html) + +## Non-Isothermal (Equilibrium) * Local thermal equilibrium assumption * One energy conservation equation for the porous solid matrix and the fluids - $\begin{aligned}\frac{\partial \left( \phi \sum_\alpha \varrho_\alpha u_\alpha S_\alpha \right)}{\partial t} &+ \frac{\partial \left(\left(1 - \phi \right)\varrho_s c_s T \right)}{\partial t} \\ - &- \sum_\alpha \text{div} \left\lbrace \varrho_\alpha h_\alpha \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\textbf{grad}\, p_\alpha - \varrho_\alpha \mathbf{g} \right) \right\rbrace \\ - &- \text{div} \left(\lambda_{pm} \textbf{grad}\, T \right) = q^h \end{aligned}$ + $$\begin{aligned}\frac{\partial \left( \phi \sum_\alpha \varrho_\alpha u_\alpha S_\alpha \right)}{\partial t} &+ \frac{\partial \left(\left(1 - \phi \right)\varrho_s c_s T \right)}{\partial t} + + \sum_\alpha \text{div} \left( \varrho_\alpha h_\alpha \mathbf{v}_\alpha \right) + - \text{div} \left(\lambda_\text{pm} \textbf{grad}\, T \right) = q^h \end{aligned}$$ + +* Specific internal energy $u_\alpha = h_\alpha - p_\alpha / \varrho_\alpha$ +* Can be added to other models, additional primary variable temperature $T$ -* specific internal energy $u_\alpha = h_\alpha - p_\alpha / \varrho_\alpha$ -* can be added to other models, additional primary variable temperature $T$ +* Further details can be found in the corresponding [documentation](https://dumux.org/docs/doxygen/master/group___n_i_model.html) -## Free flow (Navier-Stokes) +## Free Flow (Navier-Stokes) * Stokes equation * Navier-Stokes equations @@ -255,16 +288,26 @@ Preimplemented models: * Momentum balance equation for a single-phase, isothermal RANS model - $\frac{\partial \left(\varrho \textbf{v} \right)}{\partial t} + \nabla \cdot \left(\varrho \textbf{v} \textbf{v}^{\text{T}} \right) = \nabla \cdot \left(\mu_\textrm{eff} \left(\nabla \textbf{v} + \nabla \textbf{v}^{\text{T}} \right) \right)$ - $- \nabla p + \varrho \textbf{g} - \textbf{f}$ + $$\frac{\partial \left(\varrho \textbf{v} \right)}{\partial t} + \nabla \cdot \left(\varrho \textbf{v} \textbf{v}^{\text{T}} \right) = \nabla \cdot \left(\mu_\textrm{eff} \left(\nabla \textbf{v} + \nabla \textbf{v}^{\text{T}} \right) \right) + - \nabla p + \varrho \textbf{g} - \textbf{f}$$ * The effective viscosity is composed of the fluid and the eddy viscosity - $\mu_\textrm{eff} = \mu + \mu_\textrm{t}$ + $$\mu_\textrm{eff} = \mu + \mu_\textrm{t}$$ * Various turbulence models are implemented -## Your model equations? +* More details can be found in the [Doxygen documentation](https://dumux.org/docs/doxygen/master/group___freeflow_models.html) + +## Other Models + +* For other models, we refer to the Doxygen documentation: + + - [Shallow water](https://dumux.org/docs/doxygen/master/group___shallow_water_models.html) + - [Geomechanics](https://dumux.org/docs/doxygen/master/group___geomechanics_models.html) + - [Pore network](https://dumux.org/docs/doxygen/master/group___pore_network_models.html) + +## Your Model Equations? # Spatial Discretization @@ -285,7 +328,7 @@ Preimplemented models: <img src="img/mpfa.png" width="80%"/> -## Control-volume finite element methods +## Control-Volume Finite Element Methods * Model domain is discretized using a **FE** mesh * Secondary **FV** mesh is constructed → control volume/**box** @@ -295,21 +338,21 @@ Preimplemented models: * **Unstructured grids** (from FE method) * **Mass conservation** (from FV method) -## Box method +## Box Method Vertex-centered finite volumes / control volume finite element method with piecewise linear polynomial functions ($\mathrm{P}_1/\mathrm{Q}_1$) <img src="img/box.png" width="70%"/> -## Finite Volume method on staggered grid +## Finite Volume Method on Staggered Control Volumes * Uses a finite volume method with different staggered control volumes for different equations * Fluxes are evaluated with a two-point flux approximation * **Robust** and **mass conservative** * Restricted to **structured grids** (tensor-product structure) -## Staggered grid discretization +## Staggered Grid Discretization <img src="img/staggered_grid.png"/>