From ebca00057ae60ff0674bab15d3a6654e3a367201 Mon Sep 17 00:00:00 2001 From: Ned Coltman <edward.coltman@iws.uni-stuttgart.de> Date: Fri, 31 Mar 2023 01:21:07 +0200 Subject: [PATCH] [slides] Add slides for the coupled ff pm section [TEMP] --- slides/coupled_ff-pm.md | 128 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 128 insertions(+) create mode 100644 slides/coupled_ff-pm.md diff --git a/slides/coupled_ff-pm.md b/slides/coupled_ff-pm.md new file mode 100644 index 00000000..8c598329 --- /dev/null +++ b/slides/coupled_ff-pm.md @@ -0,0 +1,128 @@ +--- +title: Coupled Freeflow and Porous Media Flow Models in DuMu<sup>X</sup> +--- + +# Coupled Freeflow and Porous Media Flow Models in DuMu<sup>X</sup> + +## Coupled Freeflow and Porous Media Flow Systems? + +<img src=img/FFPM-SoilWaterEvapField.png width="100%"> +<img src=img/FFPM-SaltPrecip.png width="100%"> +<img src=FFPM-FuelCellsSim.png width="100%"> + +[ETHZurich](https://emeritus.step.ethz.ch/the-step-group.html) +[EOS-SoilSalinization](https://eos.com/blog/soil-salinization/) +[EllerEtAl2011](https://iopscience.iop.org/article/10.1149/1.3596556#artAbst) + +## Conceptual Physical model +<img src=img/FFPM-PhysicalModelOverview.png width="100%"> + +## Mathematical Model: Overview +<img src=img/FFPM-ModelConceptColumn.png width="100%"> + +Freeflow: NS/RANS Equations, Non-isothermal, multi-component +Porous Medium: Multi-phase Darcy, Non-isothermal, multi-component +Coupling Conditions: Local Thermodynamic Equilibrium, continuity of fluxes + +## Mathematical Model: Freeflow +<img src=img/FFPM-freeflowsymbol.png width="100%"> + +\begin{equation} +\frac{\partial \rho_g \textbf{v}_g}{\partial t} + \nabla \cdot (\rho_g \textbf{v}_g \textbf{v}_g^T) - \DIV(\bm{\tau}_g + \bm{\tau}_{g,t}) +\DIV (p_g\textbf{I})- \rho_g \textbf{g} = 0\, . +\end{equation} + +\begin{equation} +\frac{\partial \left(\rho_g X^\kappa_g\right)}{\partial t} ++ \nabla \cdot \left( \rho_g \textbf{v}_g X^\kappa_g +- \mathbf{j}_{\text{diff}}^\kappa\right) +- q^\kappa = 0\, . +\end{equation} + +\begin{equation} +\frac{\partial (\rho_g u_g) }{\partial t} + \DIV (\rho_g h_g \textbf{v}_g) + \sum_{i} {\DIV (h_g^\kappa \textbf{j}_{\text{diff},t}^\kappa)} - \DIV ( (\lambda_{g} + \lambda_{t})) \grad T) = 0\, , +\end{equation} + +## Mathematical Model: Porous Medium Flow +<img src=img/FFPM-pmfsymbol.png width="100%"> + +\begin{equation} + \sum\limits_{\alpha \in \{\text{l, g} \}} + \left(\phi \frac{\partial \left(\rho_\alpha S_\alpha X_\alpha^\kappa\right)}{\partial t } + \nabla \cdot \textbf{v}_\alpha\rho_\alpha X_\alpha^\kappa + \sum_\kappa \nabla \cdot \left( \textbf{D}_{pm,\alpha}^\kappa\rho_\alpha\nabla X_\alpha^\kappa \right)\right) = 0 , +\end{equation} + +\begin{equation}\label{eq:darcy} + \textbf{v}_\alpha = - \frac{k_{r,\alpha}}{\mu_\alpha} K \left(\nabla p_\alpha - \rho_\alpha \textbf{g}\right) . +\end{equation} + +\begin{equation} + \sum\limits_{\alpha \in \{\text{l, g} \}} + \left(\phi\frac{\partial \left(\rho_\alpha S_\alpha u_\alpha\right)}{\partial t} + + \nabla \cdot \left(\rho_\alpha h_\alpha \textbf{v}_\alpha \right)\right) + + \left(1- \phi\right) \frac{\partial \left(\rho_s c_{p,s}T\right)}{\partial t} + - \nabla\cdot \left(\lambda_{pm} \nabla T \right) = 0 . +\end{equation} + +## Mathematical Model: Coupling Conditions + +<img src=img/FFPM-couplingsymbol.png width="100%"> + +\begin{equation} +[(\rho_g \textbf{v}_g) \cdot \textbf{n}]^{\text{ff}} = - [(\rho_g \textbf{v}_g + \rho_w \textbf{v}_w) \cdot \textbf{n}]^{\text{pm}}\, . +\end{equation} + +<img src=img/FFPM-BJS.png width="100%"> + +\begin{equation} +\left[\left(- \textbf{v}_g - \frac{\sqrt{(\textbf{K}\textbf{t}_i)\cdot \textbf{t}_i}}{\alpha_{BJ}} (\nabla \textbf{v}_g + \nabla \textbf{v}_g^T)\textbf{n} \right) \cdot \textbf{t}_i \right]^{\text{ff}} = 0\, , \quad i \in \{1, .. ,\, d-1\}\, . +\end{equation} + +\begin{equation} +[((\rho_g \textbf{v}_g \textbf{v}_g^T - (\bm{\tau}_g + \bm{\tau}_{g,t}) + p_g\textbf{I}) \textbf{n} )]^{\text{ff}} = [(p_g\textbf{I})\textbf{n}]^{\text{pm}}\, . +\end{equation} + +\begin{equation} +[(\rho_g X_g^\kappa \textbf{v}_g + \textbf{j}_{\text{diff}, t}) \cdot \textbf{n}]^{\text{ff}} = - \left[\left( \sum_{\alpha} (\rho_{\alpha} X_{\alpha}^\kappa \textbf{v}_\alpha + \textbf{j}^\kappa_{\text{diff}, \alpha})\right) \cdot \textbf{n}\right]^{\text{pm}}\, . +\end{equation} + +\begin{equation} +\left[\left(\rho_g h_g \textbf{v}_g + \sum_i h_g^\kappa \textbf{j}_{\text{diff},g}^\kappa + \lambda_{g}\grad T\right)\cdot \textbf{n}\right]^{\text{ff}} = - \left[\left( \sum_\alpha (\rho_\alpha h_\alpha \textbf{v}_\alpha + \sum_i h_\alpha^\kappa \textbf{j}_{\text{diff},\alpha}^\kappa) - \lambda_{\text{pm}}\grad T\right)\cdot \textbf{n}\right]^{\text{pm}}\, . +\end{equation} + +## Numerical Model: Coupled Model +<img src=img/FFPM-numericalmodel.png width="100%"> + +## Soil-Water Evaporation: Further Concepts + +<img src=img/FFPM-TurbulentBoundaryLayer.png width="100%"> + +<img src=img/FFPM-evapStages.png width="100%"> +[OrEtAl2013](https://doi.org/10.2136/vzj2012.0163) + +<img src=img/FFPM-evapReynoldsNum.png width="100%"> + +# Exercises: + +## Exercise: Interface + +_Tasks_ + +- Change flow direction for a tangetial flow as opposed to the original normal flow. +- Introduce the beavers joseph tangential flow interface condition. +- Redevelop the grid and introduce an undulating interface. +- Change the inflow boundary condition to a velocity profile. + +## Exercise: Models + +_Tasks_ + +- Modify the model to use 2phase multicomponent model in the porous medium. +- Experiment with various data output types: `.csv` and `.json` +- Visualize with various visualization tools: `gnuplot` and `matplotlib` + +## Exercise: Turbulence + +_Tasks_ + +- Introduce a Turbulence model to the free-flow domain +- Reduce the free-flow domain by using a symmetry condition at the upper domain boundary +- Vary grid resolution and perform a qualitative grid convergence test. -- GitLab