diff --git a/slides/coupled_ff-pm.md b/slides/coupled_ff-pm.md index 50e299abd8d2f1765cd207616c024dadcb1ebe8c..7644cc7c17b871c3397ec81db2c5047e48e30609 100644 --- a/slides/coupled_ff-pm.md +++ b/slides/coupled_ff-pm.md @@ -6,52 +6,47 @@ title: Coupled Free-Flow and Porous Media Flow Models in DuMu^x^ ## Environmental and Agricultural Issues -{style="width: 60%; margin: auto; "} -<figcaption align = "center"> -<font size = "2"> -Fig.1 - Evaporation of soil water (Heck et al. (2020))<sup>1</sup> -</font> -</figcaption> - +:::::: {.columns} +::: {.column width=65%} +<img src="img/FFPM_radiation.gif"/> +<small>Fig.1 - Evaporation of soil water (Heck et al. (2020))<sup>1</sup></small> +::: +::: {.column width=35%} * Evaporation of soil water * Soil salinization * Underground storage (e.g. CO2, atomic waste) +::: +:::::: ## Technical Issues -{style="width: 45%; align: left;"} -<figcaption align = "center"> -<font size = "2"> -Fig.2 - Filter (Schneider et al. (2023))<sup>2</sup> -</font> -</figcaption> - -* Fuel cells -* Filters (e.g. air) -* Heat exchangers (e.g. CPU cooling) +:::::: {.columns} +::: {.column width=50%} +  + <small style="text-align: center;">Fig.2 - Filter (Schneider et al. (2023))<sup>2</sup></small> +::: +::: {.column width=50%} + * Fuel cells + * Filters (e.g. air) + * Heat exchangers (e.g. CPU cooling) +::: +:::::: ## Biological Issues -{style="width: 25%; align: left;"} -<figcaption align = "center"> -<font size = "2"> -Fig.3 - Brain tissue (Koch et al. (2020))<sup>3</sup> -</font> -</figcaption> - +:::::: {.columns} +::: {.column width=28%} +<img src="img/FFPM_braintissue.png"/> +<small>Fig.3 - Brain tissue (Koch et al. (2020))<sup>3</sup></small> +::: +::: {.column width=50%} * Brain tissue * Leaf structure +::: +:::::: # Model Overview -## Conceptual Physical Model -<img src=img/FFPM-PhysicalModelOverview.png width="80%"> -<figcaption align = "center"> -<font size = "2"> -Fig.4 - Coupled dynamics at the soil-atmosphere interface (Photo: Edward Coltman) -</font> -</figcaption> - ## Conceptual Physical Model {style="width: 80%; align: left;"} <figcaption align = "center"> @@ -60,55 +55,112 @@ Fig.5 - Exchange processes at the free-flow porous-medium interface at different </font> </figcaption> -## Mathematical Model: Overview +## Mathematical Model -{style="width: 15%; margin: auto; float: left;"} - -<font size = "6"> +:::::: {.columns} +::::: {.column width=15%} +  +::::: +::::: {.column width=85%} **Free Flow:** +<font size=5.9> + * Stokes / Navier-Stokes / RANS * 1-phase, n-components, non-isothermal +</font> + **Interface conditions:** -* no thickness, no storage -* local thermodynamic equilibrium -* continuity of fluxes -* continuity of state variables +<font size=5.9> + +* no thickness, no storage, local thermal equilibrium +* continuity of fluxes and state variables + +</font> **Porous media:** +<font size=5.9> + * Darcy / Forchheimer * m-phases, n-components, non-isothermal </font> -## Mathematical Model: Free Flow -<img src=img/FFPM-freeflowsymbol.png width="40%"> +::::: +:::::: -## Mathematical Model: Free Flow -* Momentum balance +## Numerical Model +<img src=img/FFPM-numericalmodel.png width="25%"> +<figcaption align = "center"> +<font size = "2"> +Fig.6 - Discretization scheme (Fetzer (2018))<sup>4</sup> +</font> +</figcaption> + +# Exercises + +## Exercise Tasks + +1. __Interface__ + - Change flow direction + - Introduce slip condition + - Change shape of interface +2. __Porous Medium Model__ + - Use 2-phase multicomponent model + - Investigate and export water loss and visualize it +3. __Free-Flow region__ + - Introduce a turbulence model + - Use symmetry boundary conditions + - Apply grid refinement towards interface + +# <small> Supplementary Material</small> </br>Model equations +## Eqs - Free Flow +:::::: {.columns} +::::: {.column width=15%} +  +::::: +::::: {.column width=85%} + +* Momentum balance (Navier-Stokes equation) $$ -\frac{\partial \rho_g \textbf{v}_g}{\partial t} + \nabla \cdot (\rho_g \textbf{v}_g \textbf{v}_g^T) - \nabla \cdot (\mathbf{\tau}_g + \mathbf{\tau}_{g,t}) +\nabla \cdot (p_g\textbf{I})- \rho_g \textbf{g} = 0 +\frac{\partial \left(\rho_g \textbf{v}_g\right)}{\partial t} + \nabla \cdot (\rho_g \textbf{v}_g \textbf{v}_g^T) - \nabla \cdot \mathbf{\tau}_g +\nabla \cdot (p_g\textbf{I})- \rho_g \textbf{g} = 0 $$ * Component mass balance $$ \frac{\partial \left(\rho_g X^\kappa_g\right)}{\partial t} + \nabla \cdot \left( \rho_g X^\kappa_g \textbf{v}_g + \mathbf{j}_{\text{diff}}^\kappa\right) - q^\kappa = 0 $$ +::::: +:::::: + +## Eqs - Free Flow +:::::: {.columns} +::::: {.column width=15%} +  +::::: +::::: {.column width=85%} * Energy balance $$ -\frac{\partial (\rho_g u_g) }{\partial t} + \nabla \cdot (\rho_g h_g \textbf{v}_g) + \sum_{\kappa} {\nabla \cdot (h_g^\kappa \textbf{j}_{\text{diff},t}^\kappa)} - \nabla \cdot ( (\lambda_{g} + \lambda_{t}) \nabla T) = 0 +\begin{aligned} +\frac{\partial (\rho_g u_g) }{\partial t} + \nabla \cdot (\rho_g h_g \textbf{v}_g) &+ \sum_{\kappa} {\nabla \cdot (h_g^\kappa \textbf{j}_{\text{diff}}^\kappa)} \\ &- \nabla \cdot (\lambda_{g} \nabla T) = 0 +\end{aligned} $$ -## Mathematical Model: Porous Medium Flow -<img src=img/FFPM-pmfsymbol.png width="40%"> +::::: +:::::: -## Mathematical Model: Porous Medium Flow +## Eqs - Porous Medium Flow +:::::: {.columns} +::::: {.column width=15%} +  +::::: +::::: {.column width=90%} * Darcy velocity (momentum balance) $$ @@ -120,71 +172,117 @@ $$ \sum\limits_{\alpha \in \{\text{l, g} \}} \left(\phi \frac{\partial \left(\rho_\alpha S_\alpha X_\alpha^\kappa\right)}{\partial t } + \nabla \cdot \rho_\alpha X_\alpha^\kappa \textbf{v}_\alpha + \nabla \cdot \mathbf{j}_{\text{diff}}^\kappa\right) = 0 $$ -* Energy balance +::::: +:::::: + +## Eqs - Porous Medium Flow + +:::::: {.columns} +::::: {.column width=15%} +  +::::: +::::: {.column width=90%} + +* Total energy balance $$ -\sum\limits_{\alpha \in \{\text{l, g} \}}\left(\phi\frac{\partial \left(\rho_\alpha S_\alpha u_\alpha\right)}{\partial t} + \nabla \cdot \left(\rho_\alpha h_\alpha \textbf{v}_\alpha \right)\right) + \left(1-\phi\right) \frac{\partial \left(\rho_s c_{p,s}T\right)}{\partial t} - \nabla\cdot \left(\lambda_{pm} \nabla T \right) = 0 +\begin{aligned} +\sum\limits_{\alpha \in \{\text{l, g} \}} &\left(\phi\frac{\partial \left(\rho_\alpha S_\alpha u_\alpha\right)}{\partial t} + \nabla \cdot \left(\rho_\alpha h_\alpha \textbf{v}_\alpha \right)\right) \\ +&+ \left(1-\phi\right) \frac{\partial \left(\rho_s c_{p,s}T\right)}{\partial t} - \nabla\cdot \left(\lambda_{pm} \nabla T \right) = 0 +\end{aligned} $$ +::::: +:::::: + -## Mathematical Model: Coupling Conditions +## Eqs - Coupling Conditions -<img src=img/FFPM-couplingsymbol.png width="30%"> +:::::: {.columns} +::::: {.column width=15%} +  +::::: +::::: {.column width=85%} -* Total mass condition +* Continuity of total mass flux $$ [(\rho_g \textbf{v}_g) \cdot \textbf{n}]^{\text{ff}} = - [(\rho_g \textbf{v}_g + \rho_w \textbf{v}_w) \cdot \textbf{n}]^{\text{pm}} $$ -## Mathematical Model: Coupling Conditions -<img src=img/FFPM-BJS.png width="30%"> - -* Momentum (tangential) condition +* Continuity of component flux $$ -\left[\left(- \textbf{v}_g - \frac{\sqrt{(\textbf{K}\textbf{t}_i)\cdot \textbf{t}_i}}{\alpha_{\mathrm{BJ}}} (\nabla \textbf{v}_g + \nabla \textbf{v}_g^T)\textbf{n} \right) \cdot \textbf{t}_i \right]^{\text{ff}} = 0\, , \quad i \in \{1, .. ,\, d-1\}\, +\begin{aligned} + &\left[(\rho_g X_g^\kappa \textbf{v}_g + \textbf{j}_{\text{diff}^\kappa}) \cdot \textbf{n}\right]^{\text{ff}} = \\&- \left[\left( \sum_{\alpha} (\rho_{\alpha} X_{\alpha}^\kappa \textbf{v}_\alpha + \textbf{j}^\kappa_{\text{diff}, \alpha})\right) \cdot \textbf{n}\right]^{\text{pm}}\, +\end{aligned} $$ -## Mathematical Model: Coupling Conditions +::::: +:::::: + + +## Eqs - Coupling Conditions + +:::::: {.columns} +::::: {.column width=15%} + <img src="img/FFPM-couplingsymbol.png"> + <figure> + <img src="img/FFPM-BJS.png" alt="BJS Symbol"> + <figcaption style="font-size: small; text-align: left;">Beaver-Joseph slip condition</figcaption> + </figure> +::::: +::::: {.column width=85%} -* Momentum (normal) condition +* Momentum condition in normal direction $$ -[((\rho_g \textbf{v}_g \textbf{v}_g^T - (\mathbf{\tau}_g + \mathbf{\tau}_{g,t}) + p_g\textbf{I}) \textbf{n} )]^{\text{ff}} = [(p_g\textbf{I})\textbf{n}]^{\text{pm}}\, +\left[((\rho_g \textbf{v}_g \textbf{v}_g^T - \mathbf{\tau}_g + p_g\textbf{I}) \textbf{n} )\right]^{\text{ff}} = \left[(p_g\textbf{I})\textbf{n}\right]^{\text{pm}}\, $$ -* Component mass condition +* Momentum condition in tangential direction $$ -[(\rho_g X_g^\kappa \textbf{v}_g + \textbf{j}_{\text{diff}^\kappa}) \cdot \textbf{n}]^{\text{ff}} = - \left[\left( \sum_{\alpha} (\rho_{\alpha} X_{\alpha}^\kappa \textbf{v}_\alpha + \textbf{j}^\kappa_{\text{diff}, \alpha})\right) \cdot \textbf{n}\right]^{\text{pm}}\, +\begin{aligned} +\left[\left(- \textbf{v}_g - \frac{\sqrt{(\textbf{K}\textbf{t}_i)\cdot \textbf{t}_i}}{\alpha_{\mathrm{BJ}}} (\nabla \textbf{v}_g + \nabla \textbf{v}_g^T)\textbf{n} \right) \cdot \textbf{t}_i \right]^{\text{ff}} = 0\, , \\ +\quad i \in \{1, .. ,\, d-1\}\, +\end{aligned} $$ -* Energy condition +::::: +:::::: + +## Eqs - Coupling Conditions +:::::: {.columns} +::::: {.column width=15%} +  +::::: +::::: {.column width=85%} +* Continuity of energy fluxes +<font size = "5"> $$ -\left[\left(\rho_g h_g \textbf{v}_g + \sum_i h_g^\kappa \textbf{j}_{\text{diff},g}^\kappa - (\lambda_{g} + \lambda_{t})\nabla T\right)\cdot \textbf{n}\right]^{\text{ff}} = - \left[\left( \sum_\alpha (\rho_\alpha h_\alpha \textbf{v}_\alpha + \sum_\kappa h_\alpha^\kappa \textbf{j}_{\text{diff},\alpha}^\kappa) - \lambda_{\text{pm}}\nabla T\right)\cdot \textbf{n}\right]^{\text{pm}}\, +\begin{aligned} +\left[\left(\rho_g h_g \textbf{v}_g + \sum_i h_g^\kappa \textbf{j}_{\text{diff},g}^\kappa - \lambda_{g} \nabla T\right)\cdot \textbf{n}\right]^{\text{ff}} =\\ - \left[\left( \sum_\alpha (\rho_\alpha h_\alpha \textbf{v}_\alpha + \sum_\kappa h_\alpha^\kappa \textbf{j}_{\text{diff},\alpha}^\kappa) - \lambda_{\text{pm}}\nabla T\right)\cdot \textbf{n}\right]^{\text{pm}}\, +\end{aligned} $$ - -## Numerical Model: Coupled Model -<img src=img/FFPM-numericalmodel.png width="25%"> -<figcaption align = "center"> -<font size = "2"> -Fig.6 - Discretization scheme (Fetzer (2018))<sup>4</sup> </font> -</figcaption> - -# Example: Soil-Water Evaporation +::::: +:::::: -## Soil-Water Evaporation: Soil-Water Evaporation - -<img src=img/FFPM-TurbulentBoundaryLayer.png width="40%"> +# <small> Supplementary Material</small> </br>Example: Soil-Water Evaporation ## Example: Soil-Water Evaporation -<img src=img/FFPM-SoilWaterEvapField.png width="40%"> +:::::: {.columns} +::::: {.column width=50%} + <img src=img/FFPM-TurbulentBoundaryLayer.png width="80%"> +::::: +::::: {.column width=50%} +<img src=img/FFPM-SoilWaterEvapField.png width="80%"> <figcaption align = "center"> <font size = "2"> Fig.7 - Evaporation in the water cycle (Shahraeeni et al. (2012))<sup>5</sup> </font> </figcaption> +::::: +:::::: ## Example: Soil-Water Evaporation - <img src=img/FFPM-evapStages.png width="60%"> <figcaption align = "center"> @@ -231,32 +329,6 @@ Fig.10 - Results: Evaporation from a simple setup (Fetzer (2018))<sup>4</sup> </font> </figcaption> -# Exercises - -## Exercise: Interface - -_Tasks_ - -- Change flow direction for a tangential flow as opposed to the original-normal flow -- Introduce the Beavers-Joseph-tangential-flow interface condition -- Redevelop the grid and introduce an undulating interface -- Change the inflow boundary condition to a velocity profile - -## Exercise: Models - -_Tasks_ - -- Modify the model to use a 2-phase multicomponent model in the porous medium -- Experiment with various data output types: `.csv` and `.json` -- Visualize with various visualization tools: `gnuplot` and `matplotlib` - -## Exercise: Turbulence - -_Tasks_ - -- Introduce a turbulence model to the free-flow domain -- Reduce the free-flow domain by using a symmetry condition at the upper domain boundary -- Vary grid resolution and perform a qualitative grid convergence test # References