--- title: Coupled Free-Flow and Porous Media Flow Models in DuMu^x^ --- # Motivation ## Environmental and Agricultural Issues {style="width: 60%; margin: auto; "} <figcaption align = "center"> <font size = "2"> Fig.1 - Evaporation of soil water (Heck et al. (2020))<sup>1</sup> </font> </figcaption> * Evaporation of soil water * Soil salinization * Underground storage (e.g. CO2, atomic waste) ## Technical Issues {style="width: 45%; align: left;"} <figcaption align = "center"> <font size = "2"> Fig.2 - Filter (Schneider et al. (2023))<sup>2</sup> </font> </figcaption> * Fuel cells * Filters (e.g. air) * Heat exchangers (e.g. CPU cooling) ## Biological Issues {style="width: 25%; align: left;"} <figcaption align = "center"> <font size = "2"> Fig.3 - Brain tissue (Koch et al. (2020))<sup>3</sup> </font> </figcaption> * Brain tissue * Leaf structure # Model Overview ## Conceptual Physical Model <img src=img/FFPM-PhysicalModelOverview.png width="80%"> <figcaption align = "center"> <font size = "2"> Fig.4 - Coupled dynamics at the soil-atmosphere interface (Photo: Edward Coltman) </font> </figcaption> ## Conceptual Physical Model {style="width: 80%; align: left;"} <figcaption align = "center"> <font size = "2"> Fig.5 - Exchange processes at the free-flow porous-medium interface at different scales (Photo: Martin Schneider) </font> </figcaption> ## Mathematical Model: Overview {style="width: 15%; margin: auto; float: left;"} <font size = "6"> **Free Flow:** * Stokes / Navier-Stokes / RANS * 1-phase, n-components, non-isothermal **Interface conditions:** * no thickness, no storage * local thermodynamic equilibrium * continuity of fluxes * continuity of state variables **Porous media:** * Darcy / Forchheimer * m-phases, n-components, non-isothermal </font> ## Mathematical Model: Free Flow <img src=img/FFPM-freeflowsymbol.png width="40%"> ## Mathematical Model: Free Flow * Momentum balance $$ \frac{\partial \rho_g \textbf{v}_g}{\partial t} + \nabla \cdot (\rho_g \textbf{v}_g \textbf{v}_g^T) - \nabla \cdot (\mathbf{\tau}_g + \mathbf{\tau}_{g,t}) +\nabla \cdot (p_g\textbf{I})- \rho_g \textbf{g} = 0 $$ * Component mass balance $$ \frac{\partial \left(\rho_g X^\kappa_g\right)}{\partial t} + \nabla \cdot \left( \rho_g X^\kappa_g \textbf{v}_g + \mathbf{j}_{\text{diff}}^\kappa\right) - q^\kappa = 0 $$ * Energy balance $$ \frac{\partial (\rho_g u_g) }{\partial t} + \nabla \cdot (\rho_g h_g \textbf{v}_g) + \sum_{\kappa} {\nabla \cdot (h_g^\kappa \textbf{j}_{\text{diff},t}^\kappa)} - \nabla \cdot ( (\lambda_{g} + \lambda_{t}) \nabla T) = 0 $$ ## Mathematical Model: Porous Medium Flow <img src=img/FFPM-pmfsymbol.png width="40%"> ## Mathematical Model: Porous Medium Flow * Darcy velocity (momentum balance) $$ \textbf{v}_\alpha = - \frac{k_{r,\alpha}}{\mu_\alpha} K \left(\nabla p_\alpha - \rho_\alpha \textbf{g}\right) $$ * Component mass balance $$ \sum\limits_{\alpha \in \{\text{l, g} \}} \left(\phi \frac{\partial \left(\rho_\alpha S_\alpha X_\alpha^\kappa\right)}{\partial t } + \nabla \cdot \rho_\alpha X_\alpha^\kappa \textbf{v}_\alpha + \nabla \cdot \mathbf{j}_{\text{diff}}^\kappa\right) = 0 $$ * Energy balance $$ \sum\limits_{\alpha \in \{\text{l, g} \}}\left(\phi\frac{\partial \left(\rho_\alpha S_\alpha u_\alpha\right)}{\partial t} + \nabla \cdot \left(\rho_\alpha h_\alpha \textbf{v}_\alpha \right)\right) + \left(1-\phi\right) \frac{\partial \left(\rho_s c_{p,s}T\right)}{\partial t} - \nabla\cdot \left(\lambda_{pm} \nabla T \right) = 0 $$ ## Mathematical Model: Coupling Conditions <img src=img/FFPM-couplingsymbol.png width="30%"> * Total mass condition $$ [(\rho_g \textbf{v}_g) \cdot \textbf{n}]^{\text{ff}} = - [(\rho_g \textbf{v}_g + \rho_w \textbf{v}_w) \cdot \textbf{n}]^{\text{pm}} $$ ## Mathematical Model: Coupling Conditions <img src=img/FFPM-BJS.png width="30%"> * Momentum (tangential) condition $$ \left[\left(- \textbf{v}_g - \frac{\sqrt{(\textbf{K}\textbf{t}_i)\cdot \textbf{t}_i}}{\alpha_{\mathrm{BJ}}} (\nabla \textbf{v}_g + \nabla \textbf{v}_g^T)\textbf{n} \right) \cdot \textbf{t}_i \right]^{\text{ff}} = 0\, , \quad i \in \{1, .. ,\, d-1\}\, $$ ## Mathematical Model: Coupling Conditions * Momentum (normal) condition $$ [((\rho_g \textbf{v}_g \textbf{v}_g^T - (\mathbf{\tau}_g + \mathbf{\tau}_{g,t}) + p_g\textbf{I}) \textbf{n} )]^{\text{ff}} = [(p_g\textbf{I})\textbf{n}]^{\text{pm}}\, $$ * Component mass condition $$ [(\rho_g X_g^\kappa \textbf{v}_g + \textbf{j}_{\text{diff}^\kappa}) \cdot \textbf{n}]^{\text{ff}} = - \left[\left( \sum_{\alpha} (\rho_{\alpha} X_{\alpha}^\kappa \textbf{v}_\alpha + \textbf{j}^\kappa_{\text{diff}, \alpha})\right) \cdot \textbf{n}\right]^{\text{pm}}\, $$ * Energy condition $$ \left[\left(\rho_g h_g \textbf{v}_g + \sum_i h_g^\kappa \textbf{j}_{\text{diff},g}^\kappa - (\lambda_{g} + \lambda_{t})\nabla T\right)\cdot \textbf{n}\right]^{\text{ff}} = - \left[\left( \sum_\alpha (\rho_\alpha h_\alpha \textbf{v}_\alpha + \sum_\kappa h_\alpha^\kappa \textbf{j}_{\text{diff},\alpha}^\kappa) - \lambda_{\text{pm}}\nabla T\right)\cdot \textbf{n}\right]^{\text{pm}}\, $$ ## Numerical Model: Coupled Model <img src=img/FFPM-numericalmodel.png width="25%"> <figcaption align = "center"> <font size = "2"> Fig.6 - Discretization scheme (Fetzer (2018))<sup>4</sup> </font> </figcaption> # Example: Soil-Water Evaporation ## Soil-Water Evaporation: Soil-Water Evaporation <img src=img/FFPM-TurbulentBoundaryLayer.png width="40%"> ## Example: Soil-Water Evaporation <img src=img/FFPM-SoilWaterEvapField.png width="40%"> <figcaption align = "center"> <font size = "2"> Fig.7 - Evaporation in the water cycle (Shahraeeni et al. (2012))<sup>5</sup> </font> </figcaption> ## Example: Soil-Water Evaporation <img src=img/FFPM-evapStages.png width="60%"> <figcaption align = "center"> <font size = "2"> Fig.8 - Different evaporation stages (Or et al.(2013))<sup>6</sup> </font> </figcaption> ## Example: Simple Evaporation Setup {style="width: 60%; margin: auto; float: left;"} <font size = "2"> Tab1: Input parameter </font> <font size = "5"> | Parameter | Value | |:----------------------------|--------------:| | $\textbf{v}_g^{ff}$ [m/s] | (3.5,0)$^T$ | | $p_g^{ff}$ [Pa] | 1e5 | | $X_g^{w,ff}$ [-] | 0.008 | | $T^{ff}$ [K] | 298.15 | | $p_g^{pm}$ [Pa] | 1e5 | | $S_l^{pm}$ [-] | 0.98 | | $T^{pm}$ [K] | 298.15 | </font> <figcaption align = "left"> <font size = "2"> Fig.9 - Model setup (Fetzer (2018))<sup>4</sup> </font> </figcaption> ## Example: Results  <figcaption align = "center"> <font size = "2"> Fig.10 - Results: Evaporation from a simple setup (Fetzer (2018))<sup>4</sup> </font> </figcaption> # Exercises ## Exercise: Interface _Tasks_ - Change flow direction for a tangential flow as opposed to the original-normal flow - Introduce the Beavers-Joseph-tangential-flow interface condition - Redevelop the grid and introduce an undulating interface - Change the inflow boundary condition to a velocity profile ## Exercise: Models _Tasks_ - Modify the model to use a 2-phase multicomponent model in the porous medium - Experiment with various data output types: `.csv` and `.json` - Visualize with various visualization tools: `gnuplot` and `matplotlib` ## Exercise: Turbulence _Tasks_ - Introduce a turbulence model to the free-flow domain - Reduce the free-flow domain by using a symmetry condition at the upper domain boundary - Vary grid resolution and perform a qualitative grid convergence test # References ## <font size = "5"> 1. Heck, K., Coltman, E., Schneider, J. and Helmig, R. (2020). Influence of radiation on evaporation rates: A numerical analysis. Water Resources Research, 56, e2020WR027332. https://doi.org/10.1029/2020WR027332 2. Schneider, M., Gläser, D., Weishaupt, K., Coltman, E., Flemisch, B. and Helmig, R. (2023). Coupling staggered-grid and vertex-centered finite-volume methods for coupled porous-medium free-flow problems. Journal of Computational Physics. 112042. https://doi.org/10.1016/j.jcp.2023.112042. 3. Koch, T., Flemisch, B., Helmig, R., Wiest, R. and Obrist, D. (2020). A multiscale subvoxel perfusion model to estimate diffusive capillary wall conductivity in multiple sclerosis lesions from perfusion MRI data. Int J Numer Meth Biomed Engng. 36:e3298. https://doi.org/10.1002/cnm. 4. Fetzer, Thomas: Coupled Free and Porous-Medium Flow Processes Affected by Turbulence and Roughness – Models, Concepts and Analysis, Universität Stuttgart. - Stuttgart: Institut für Wasser- und Umweltsystemmodellierung, 2018 5. Shahraeeni, E., Lehmann, P. and Or, D. (2012). Coupling of evaporative fluxes from drying porous surfaces with air boundary layer: Characteristics of evaporation from discrete pores. Water Resources Research. 48. 9525-. 10.1029/2012WR011857. 6. Or, D., Lehmann, P., Shahraeeni, E. and Shokri, N. (2013), Advances in Soil Evaporation Physics—A Review. Vadose Zone Journal, 12: 1-16 vzj2012.0163. https://doi.org/10.2136/vzj2012.0163 </font>