--- title: DuMuX for modelling fractures in porous media --- # What are fractures? ## Joints <img src="img/fractures_joints.jpeg" width="600"/><br> <small>Credit: [flickr.com/photos/dietmardownunder/44733263071](https://www.flickr.com/photos/dietmardownunder/44733263071), licensed under [CC-BY-2.0](https://creativecommons.org/licenses/by/2.0/).</small> ## Faults <img src="img/fractures_fault.jpeg" width="600"/><br> <small>Credit: [Wikipedia](https://upload.wikimedia.org/wikipedia/commons/4/48/Piqiang_Fault%2C_China_detail.jpg).</small> # Why are fractures important? ## Example applications I Hydraulic fracturing <img src="img/fractures_fracking.jpeg" width="500"/><br> <small>Credit: [Wikipedia](https://de.wikipedia.org/wiki/Hydraulic_Fracturing#/media/Datei:Hydraulic_Fracturing-Related_Activities.jpg).</small> ## Example applications II Geothermal energy production <img src="img/fractures_geothermal.jpeg" width="500"/><br> <small>Credit: [Wikipedia](https://en.wikipedia.org/wiki/Geothermal_energy#/media/File:NesjavellirPowerPlant_edit2.jpg).</small> ## Hydraulic effects (Results from the DuMuX fracture exercise) <img src=img/fractures_pressure_withfracs.png height=380> <img src=img/fractures_pressure_nofracs_legend.png height=380> ## Capillary effects (Results from the DuMuX fracture exercise) <img src=img/fractures_saturation_withfracs.png width="40%"> <img src=img/fractures_saturation_nofracs.png width="40%"> # Model concept ## Discretization <img src=img/fractures_grid_equi.jpg width="32%"> <img src=img/fractures_grid_ld.png width="32%"> <img src=img/fractures_grid_nonmatch.png width="32%"> ## Problem Abstraction <img src=img/fractures_modeldomain.png width="70%"> ## Problem Formulation :::::: {.columns} ::: {.column width=33%} <div style="display: flex; align-items: center; height: 100%;"> <img src=img/fractures_modeldomain.png> </div> ::: ::: {.column width=67%} $$ \small \begin{aligned} \mathbf{u}_i &= - \mathbf{K}_i \nabla p_i, \\ \nabla \cdot \mathbf{u}_i &= q_i, &&\mathrm{in} \, \Omega_i, \\ \mathbf{U}_f &=- a \mathbf{K}_{f, \tau} \nabla_\tau P_f, \\ \nabla_\tau \cdot\mathbf{U}_f &= q_f + \left( \mathbf{u}_1 \cdot \mathbf{n}_1 + \mathbf{u}_2 \cdot \mathbf{n}_2 \right), &&\mathrm{in} \, \Omega_f, \\ \mathbf{u}_i \cdot \mathbf{n}_i &= - \frac{2 k_\eta}{a} ( P_f - p_i ), &&\mathrm{in} \, \gamma_N, \\ P_f &= p_i, &&\mathrm{in} \, \gamma_D. \end{aligned} $$ ::: :::::: # Fracture exercise ## Buoyancy-driven gas migration <img src=img/fractures_exercise_solution.gif width="50%"> ## Tasks - Change boundary conditions - Change fracture properties - Use different coupling conditions - Make use of domain markers