--- title: Coupled Freeflow and Porous Media Flow Models in DuMu<sup>X</sup> --- # Coupled Freeflow and Porous Media Flow Models in DuMu<sup>X</sup> ## Coupled Freeflow and Porous Media Flow Systems? <img src=img/FFPM-SoilWaterEvapField.png width="100%"> <img src=img/FFPM-SaltPrecip.png width="100%"> <img src=FFPM-FuelCellsSim.png width="100%"> [ETHZurich](https://emeritus.step.ethz.ch/the-step-group.html) [EOS-SoilSalinization](https://eos.com/blog/soil-salinization/) [EllerEtAl2011](https://iopscience.iop.org/article/10.1149/1.3596556#artAbst) ## Conceptual Physical model <img src=img/FFPM-PhysicalModelOverview.png width="100%"> ## Mathematical Model: Overview <img src=img/FFPM-ModelConceptColumn.png width="100%"> Freeflow: NS/RANS Equations, Non-isothermal, multi-component Porous Medium: Multi-phase Darcy, Non-isothermal, multi-component Coupling Conditions: Local Thermodynamic Equilibrium, continuity of fluxes ## Mathematical Model: Freeflow <img src=img/FFPM-freeflowsymbol.png width="100%"> \begin{equation} \frac{\partial \rho_g \textbf{v}_g}{\partial t} + \nabla \cdot (\rho_g \textbf{v}_g \textbf{v}_g^T) - \DIV(\bm{\tau}_g + \bm{\tau}_{g,t}) +\DIV (p_g\textbf{I})- \rho_g \textbf{g} = 0\, . \end{equation} \begin{equation} \frac{\partial \left(\rho_g X^\kappa_g\right)}{\partial t} + \nabla \cdot \left( \rho_g \textbf{v}_g X^\kappa_g - \mathbf{j}_{\text{diff}}^\kappa\right) - q^\kappa = 0\, . \end{equation} \begin{equation} \frac{\partial (\rho_g u_g) }{\partial t} + \DIV (\rho_g h_g \textbf{v}_g) + \sum_{i} {\DIV (h_g^\kappa \textbf{j}_{\text{diff},t}^\kappa)} - \DIV ( (\lambda_{g} + \lambda_{t})) \grad T) = 0\, , \end{equation} ## Mathematical Model: Porous Medium Flow <img src=img/FFPM-pmfsymbol.png width="100%"> \begin{equation} \sum\limits_{\alpha \in \{\text{l, g} \}} \left(\phi \frac{\partial \left(\rho_\alpha S_\alpha X_\alpha^\kappa\right)}{\partial t } + \nabla \cdot \textbf{v}_\alpha\rho_\alpha X_\alpha^\kappa + \sum_\kappa \nabla \cdot \left( \textbf{D}_{pm,\alpha}^\kappa\rho_\alpha\nabla X_\alpha^\kappa \right)\right) = 0 , \end{equation} \begin{equation}\label{eq:darcy} \textbf{v}_\alpha = - \frac{k_{r,\alpha}}{\mu_\alpha} K \left(\nabla p_\alpha - \rho_\alpha \textbf{g}\right) . \end{equation} \begin{equation} \sum\limits_{\alpha \in \{\text{l, g} \}} \left(\phi\frac{\partial \left(\rho_\alpha S_\alpha u_\alpha\right)}{\partial t} + \nabla \cdot \left(\rho_\alpha h_\alpha \textbf{v}_\alpha \right)\right) + \left(1- \phi\right) \frac{\partial \left(\rho_s c_{p,s}T\right)}{\partial t} - \nabla\cdot \left(\lambda_{pm} \nabla T \right) = 0 . \end{equation} ## Mathematical Model: Coupling Conditions <img src=img/FFPM-couplingsymbol.png width="100%"> \begin{equation} [(\rho_g \textbf{v}_g) \cdot \textbf{n}]^{\text{ff}} = - [(\rho_g \textbf{v}_g + \rho_w \textbf{v}_w) \cdot \textbf{n}]^{\text{pm}}\, . \end{equation} <img src=img/FFPM-BJS.png width="100%"> \begin{equation} \left[\left(- \textbf{v}_g - \frac{\sqrt{(\textbf{K}\textbf{t}_i)\cdot \textbf{t}_i}}{\alpha_{BJ}} (\nabla \textbf{v}_g + \nabla \textbf{v}_g^T)\textbf{n} \right) \cdot \textbf{t}_i \right]^{\text{ff}} = 0\, , \quad i \in \{1, .. ,\, d-1\}\, . \end{equation} \begin{equation} [((\rho_g \textbf{v}_g \textbf{v}_g^T - (\bm{\tau}_g + \bm{\tau}_{g,t}) + p_g\textbf{I}) \textbf{n} )]^{\text{ff}} = [(p_g\textbf{I})\textbf{n}]^{\text{pm}}\, . \end{equation} \begin{equation} [(\rho_g X_g^\kappa \textbf{v}_g + \textbf{j}_{\text{diff}, t}) \cdot \textbf{n}]^{\text{ff}} = - \left[\left( \sum_{\alpha} (\rho_{\alpha} X_{\alpha}^\kappa \textbf{v}_\alpha + \textbf{j}^\kappa_{\text{diff}, \alpha})\right) \cdot \textbf{n}\right]^{\text{pm}}\, . \end{equation} \begin{equation} \left[\left(\rho_g h_g \textbf{v}_g + \sum_i h_g^\kappa \textbf{j}_{\text{diff},g}^\kappa + \lambda_{g}\grad T\right)\cdot \textbf{n}\right]^{\text{ff}} = - \left[\left( \sum_\alpha (\rho_\alpha h_\alpha \textbf{v}_\alpha + \sum_i h_\alpha^\kappa \textbf{j}_{\text{diff},\alpha}^\kappa) - \lambda_{\text{pm}}\grad T\right)\cdot \textbf{n}\right]^{\text{pm}}\, . \end{equation} ## Numerical Model: Coupled Model <img src=img/FFPM-numericalmodel.png width="100%"> ## Soil-Water Evaporation: Further Concepts <img src=img/FFPM-TurbulentBoundaryLayer.png width="100%"> <img src=img/FFPM-evapStages.png width="100%"> [OrEtAl2013](https://doi.org/10.2136/vzj2012.0163) <img src=img/FFPM-evapReynoldsNum.png width="100%"> # Exercises: ## Exercise: Interface _Tasks_ - Change flow direction for a tangetial flow as opposed to the original normal flow. - Introduce the beavers joseph tangential flow interface condition. - Redevelop the grid and introduce an undulating interface. - Change the inflow boundary condition to a velocity profile. ## Exercise: Models _Tasks_ - Modify the model to use 2phase multicomponent model in the porous medium. - Experiment with various data output types: `.csv` and `.json` - Visualize with various visualization tools: `gnuplot` and `matplotlib` ## Exercise: Turbulence _Tasks_ - Introduce a Turbulence model to the free-flow domain - Reduce the free-flow domain by using a symmetry condition at the upper domain boundary - Vary grid resolution and perform a qualitative grid convergence test.