// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /***************************************************************************** * See the file COPYING for full copying permissions. * * * * This program is free software: you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation, either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see <http://www.gnu.org/licenses/>. * *****************************************************************************/ /*! * \file * \brief The main file for the 2p2c porousmediumflow problem in exercise-basic */ #include <config.h> #include <ctime> #include <iostream> #include <dune/common/parallel/mpihelper.hh> #include <dune/common/timer.hh> #include <dune/grid/io/file/dgfparser/dgfexception.hh> #include <dune/grid/io/file/vtk.hh> #include <dumux/common/properties.hh> #include <dumux/common/parameters.hh> #include <dumux/common/valgrind.hh> #include <dumux/common/dumuxmessage.hh> #include <dumux/linear/amgbackend.hh> #include <dumux/nonlinear/newtonsolver.hh> #include <dumux/assembly/fvassembler.hh> #include <dumux/assembly/diffmethod.hh> #include <dumux/discretization/method.hh> #include <dumux/io/vtkoutputmodule.hh> #include <dumux/io/grid/gridmanager.hh> #include <dumux/io/loadsolution.hh> // The problem file, where setup-specific boundary and initial conditions are defined. #include "injection2p2cproblem.hh" //////////////////////// // the main function //////////////////////// int main(int argc, char** argv) try { using namespace Dumux; // define the type tag for this problem using TypeTag = Properties::TTag::Injection2p2cCCTypeTag; // initialize MPI, finalize is done automatically on exit const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv); // print dumux start message if (mpiHelper.rank() == 0) DumuxMessage::print(/*firstCall=*/true); // parse command line arguments and input file Parameters::init(argc, argv); // try to create a grid (from the given grid file or the input file) GridManager<GetPropType<TypeTag, Properties::Grid>> gridManager; gridManager.init(); //////////////////////////////////////////////////////////// // run instationary non-linear problem on this grid //////////////////////////////////////////////////////////// // we compute on the leaf grid view const auto& leafGridView = gridManager.grid().leafGridView(); // create the finite volume grid geometry using FVGridGeometry = GetPropType<TypeTag, Properties::FVGridGeometry>; auto fvGridGeometry = std::make_shared<FVGridGeometry>(leafGridView); fvGridGeometry->update(); // the problem (initial and boundary conditions) using Problem = GetPropType<TypeTag, Properties::Problem>; auto problem = std::make_shared<Problem>(fvGridGeometry); // check if we are about to restart a previously interrupted simulation using Scalar = GetPropType<TypeTag, Properties::Scalar>; Scalar restartTime = getParam<Scalar>("Restart.Time", 0); // the solution vector using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>; SolutionVector x(fvGridGeometry->numDofs()); // problem->applyInitialSolution(x); if (restartTime > 0) { using IOFields = GetPropType<TypeTag, Properties::IOFields>; using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>; using ModelTraits = GetPropType<TypeTag, Properties::ModelTraits>; using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>; const auto fileName = getParam<std::string>("Restart.File"); const auto pvName = createPVNameFunction<IOFields, PrimaryVariables, ModelTraits, FluidSystem>(); loadSolution(x, fileName, pvName, *fvGridGeometry); } else problem->applyInitialSolution(x); auto xOld = x; // the grid variables using GridVariables = GetPropType<TypeTag, Properties::GridVariables>; auto gridVariables = std::make_shared<GridVariables>(problem, fvGridGeometry); gridVariables->init(x); // get some time loop parameters using Scalar = GetPropType<TypeTag, Properties::Scalar>; const auto tEnd = getParam<Scalar>("TimeLoop.TEnd"); const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize"); auto dt = getParam<Scalar>("TimeLoop.DtInitial"); // intialize the vtk output module // using VtkOutputFields = GetPropType<TypeTag, Properties::VtkOutputFields>; // VtkOutputModule<TypeTag> vtkWriter(*problem, *fvGridGeometry, *gridVariables, x, problem->name()); // VtkOutputFields::init(vtkWriter); //! Add model specific output fields // intialize the vtk output module using VtkOutputFields = GetPropType<TypeTag, Properties::VtkOutputFields>; VtkOutputModule<GridVariables, SolutionVector> vtkWriter(*gridVariables, x, problem->name()); using VelocityOutput = GetPropType<TypeTag, Properties::VelocityOutput>; vtkWriter.addVelocityOutput(std::make_shared<VelocityOutput>(*gridVariables)); VtkOutputFields::initOutputModule(vtkWriter); //!< Add model specific output fields vtkWriter.write(restartTime); // instantiate time loop auto timeLoop = std::make_shared<TimeLoop<Scalar>>(restartTime, dt, tEnd); timeLoop->setMaxTimeStepSize(maxDt); // the assembler with time loop for instationary problem using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>; auto assembler = std::make_shared<Assembler>(problem, fvGridGeometry, gridVariables, timeLoop); // the linear solver using LinearSolver = AMGBackend<TypeTag>; auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->dofMapper()); // the non-linear solver // using PrimaryVariableSwitch = GetPropType<TypeTag, Properties::PrimaryVariableSwitch>; using NewtonSolver = NewtonSolver<Assembler, LinearSolver>; NewtonSolver nonLinearSolver(assembler, linearSolver); // time loop timeLoop->start(); while (!timeLoop->finished()) { // set previous solution for storage evaluations assembler->setPreviousSolution(xOld); //set time in problem (is used in time-dependent Neumann boundary condition) problem->setTime(timeLoop->time()+timeLoop->timeStepSize()); // solve the non-linear system with time step control nonLinearSolver.solve(x, *timeLoop); // make the new solution the old solution xOld = x; gridVariables->advanceTimeStep(); // advance to the time loop to the next step timeLoop->advanceTimeStep(); // report statistics of this time step timeLoop->reportTimeStep(); // set new dt as suggested by the newton solver timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize())); // output to vtk vtkWriter.write(timeLoop->time()); } timeLoop->finalize(leafGridView.comm()); //////////////////////////////////////////////////////////// // finalize, print dumux message to say goodbye //////////////////////////////////////////////////////////// // print dumux end message if (mpiHelper.rank() == 0) { Parameters::print(); DumuxMessage::print(/*firstCall=*/false); } return 0; } // end main catch (Dumux::ParameterException &e) { std::cerr << std::endl << e << " ---> Abort!" << std::endl; return 1; } catch (Dune::DGFException & e) { std::cerr << "DGF exception thrown (" << e << "). Most likely, the DGF file name is wrong " "or the DGF file is corrupted, " "e.g. missing hash at end of file or wrong number (dimensions) of entries." << " ---> Abort!" << std::endl; return 2; } catch (Dune::Exception &e) { std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl; return 3; } catch (...) { std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl; return 4; }