--- title: Introduction to DuMu^x^ subtitle: Overview and Available Models --- # Table of Contents ## Table of Contents 1. [History and Structure](#structure-and-development-history) 2. [Available Models](#available-models) 3. [Spatial Discretization](#spatial-discretization) 4. [Model Components](#model-components) 5. [Simulation Flow](#simulation-flow) # Structure and development history ## DuMu^x^ is a DUNE module <img src="img/dumux_dune_module.png"/> ## The DUNE Framework * **Developed** by scientists at around 10 European research institutions. * **Separation** of data structures and algorithms by abstract interfaces. * Efficient implementation using **generic** programming techniques. * **Reuse** of existing FE packages with a large body of functionality. * Current stable release: **2.9** (November 2022). ## DUNE Core Modules * **dune-common:** basic classes * **dune-geometry:** geometric entities * **dune-grid:** abstract grid/mesh interface * **dune-istl:** iterative solver template library * **dune-localfunctions:** finite element shape functions ## Overview <img src="img/dumux.png" width="300"/> * **DuMu^x^:** DUNE for Multi-{Phase, Component, Scale, Physics, $\text{...}$} flow and transport in porous media. * **Goal:** **sustainable, consistent, research-friendly framework** for the implementation and application of **FV discretization schemes**, **model concepts**, and **constitutive relations**. * **Developed** by more than 30 PhD students and post docs, mostly at LH^2^ (Uni Stuttgart). ## Applications * **Successfully applied** to * gas (CO~2~, H~2~, CH~4~, ...) storage scenarios * environmental remediation problems * transport of substances in biological tissue * subsurface-atmosphere coupling (Navier-Stokes / Darcy) * flow and transport in fractured porous media * root-soil interaction * pore-network modelling * developing new finite volume schemes ## DuMu^x^ Modules * [**dumux-lecture**](https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-lecture): example applications for lectures offered by LH2, Uni Stuttgart * [**dumux-pub/---**](https://git.iws.uni-stuttgart.de/dumux-pub): code and data accompanying a publication (reproduce and archive results) * [**dumux-appl/---**](https://git.iws.uni-stuttgart.de/dumux-appl): Various application modules (many not publicly available, e.g. ongoing research) ## Development history * 01/2007: Development **starts**. * 07/2009: Release **1.0**. * 09/2010: **Split** into stable and development part. * 12/2010: Anonymous **read access** to the **SVN** trunk of the stable part. * 02/2011: Release **2.0,** ..., 10/2017: Release **2.12**. * 09/2015: Transition from Subversion to **Git**. * 12/2018: Release **3.0,** ..., 03/2023: Release **3.7**. ## Funding Efforts mainly funded through ressources at the LH^2^: [Department of Hydromechanics and Modelling of Hydrosystems at the University of Stuttgart](https://www.iws.uni-stuttgart.de/en/lh2/) and third-party funding aquired at the LH^2^ <img src="img/lh2.jpeg" width="300"/> ## Funding We acknowledge funding that supported the development of DuMu^x^ in past and present: <img src="img/funding.svg" width="550"/> ## Downloads and Publications * More than 1000 unique release **downloads**. * More than 200 peer-reviewed **publications** and PhD theses using DuMu^x^ ## Evolution of C++ Files <img src="img/files_vs_releases.png" width="600"/> ## Evolution of Code Lines <img src="img/lines_vs_releases.png" width="600"/> ## Mailing Lists and GitLab * **Mailing lists** of DUNE (<dune@dune-project.org>) and DuMu^x^ (<dumux@listserv.uni-stuttgart.de>) * GitLab **Issue Tracker** (<https://git.iws.uni-stuttgart.de/dumux-repositories/dumux/issues>) * Get **GitLab** accounts (non-anonymous) for better access * DUNE GitLab (<https://gitlab.dune-project.org/core>) * DuMu^x^ GitLab (<https://git.iws.uni-stuttgart.de/dumux-repositories/dumux>) ## Documentation * Code **documentation** * DuMu^x^ (<https://dumux.org/docs/doxygen/master/>) * DUNE (<https://dune-project.org/doxygen/>) * DuMu^x^ **Handbook** (<https://dumux.org/docs/#handbook>) * DuMu^x^ **Examples** (<https://git.iws.uni-stuttgart.de/dumux-repositories/dumux/-/tree/master/examples#examples>) * DuMu^x^ **Website** (<https://dumux.org/>) # Mathematical Models ## Mathematical Models Preimplemented models: * **Flow in porous media (Darcy)**: Single and multi-phase models for flow and transport in porous materials. * **Free flow (Navier-Stokes)**: Single-phase models based on the Navier-Stokes equations. * **Shallow water flow**: Two-dimensional shallow water flow (depth-averaged). * **Geomechanics**: Models taking into account solid deformation of porous materials. * **Pore network**: Single and multi-phase models for flow and transport in pore networks. ## Flow in Porous Media <img src="img/models.png" width="650"/> ## Darcy's law * Describes the advective flux in porous media on the macro-scale * One-phase flow $v = - \frac{\mathbf{K}}{\mu} \left(\textbf{grad}\, p - \varrho \mathbf{g} \right)$ * Multi-phase flow (phase $\alpha$) $v_\alpha = - \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\textbf{grad}\, p_\alpha - \varrho_\alpha \mathbf{g} \right)$ where $k_{r\alpha}(S_\alpha)$ is the relative permeability, a function of saturation $S_\alpha$ ## 1p -- single-phase * Uses standard Darcy approach for the conservation of momentum * Mass continuity equation $\frac{\partial\left( \phi \varrho \right)}{\partial t} + \text{div} \left\lbrace - \varrho \frac{\textbf{K}}{\mu} \left(\textbf{grad}\, p - \varrho \textbf{g} \right) \right\rbrace = q$ * Primary variable: $p$ ## 1pnc -- single-phase, multi-component * Uses standard Darcy approach for the conservation of momentum * Transport of component $\kappa \in \{w, a, ...\}$ $\frac{\partial\left( \phi \varrho X^\kappa \right)}{\partial t} - \text{div} \left\lbrace \varrho X^\kappa \frac{\textbf {K}}{\mu} \left(\textbf{grad}\, p - \varrho \textbf{g} \right) + \varrho D^\kappa_\text{pm} \textbf{grad} X^\kappa \right\rbrace = q$ * Primary variables: $p$ and $x^\kappa$ ## 1pncmin -- with mineralization * Transport equation for each component $\kappa \in \{w, a, ...\}$ $\frac{\partial \left( \varrho_f X^\kappa \phi \right)}{\partial t}$ $- \text{div} \left\lbrace \varrho_f X^\kappa \frac{k_{r}}{\mu} \mathbf{K} \left(\textbf{grad}\, p - \varrho_f \mathbf{g} \right) \right\rbrace$ $- \text{div} \left\lbrace \mathbf{D_{pm}^\kappa} \varrho_f \textbf{grad}\, X^\kappa \right\rbrace = q_\kappa$ * Mass balance solid or mineral phases $\frac{\partial \left(\varrho_\lambda \phi_\lambda \right)}{\partial t} = q_\lambda$ * Primary variables: $p$, $x^k$ and $\phi_\lambda$ ## 2p -- two-phase * Uses standard multi-phase Darcy approach for the conservation of momentum * Conservation of the phase mass of phase $\alpha \in \{w, n\}$ $\frac{\partial \left( \phi \varrho_\alpha S_\alpha \right)}{\partial t} - \text{div} \left\{\varrho_\alpha \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\textbf{grad}\, p_\alpha - \varrho_\alpha \mathbf{g} \right) \right\} = q_\alpha$ * Constitutive relation: $p_c := p_n - p_w = p_c(S_w)$, $k_{r\alpha}$ = $k_{r\alpha}(S_w)$ * Physical constraint (no free space): $S_w + S_n = 1$ * Primary variables: $p_w$, $S_n$ or $p_n$, $S_w$ ## 2pnc * Transport equation for each component $\kappa \in \{w, n, ...\}$ in phase $\alpha \in \{w, n\}$ $\begin{aligned}\frac{\partial \left( \sum_\alpha \varrho_\alpha X_\alpha^\kappa \phi S_\alpha \right)}{\partial t} &- \sum_\alpha \text{div} \left\lbrace \varrho_\alpha X_\alpha^\kappa \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left( \textbf{grad}\, p_\alpha - \varrho_\alpha \mathbf{g} \right) \right\rbrace \\ &- \sum_\alpha \text{div} \left\lbrace \mathbf{D_{\alpha, pm}^\kappa} \varrho_\alpha \textbf{grad}\, X^\kappa_\alpha \right\rbrace = \sum_\alpha q_\alpha^\kappa \end{aligned}$ * Constitutive relation: $p_c := p_n - p_w = p_c(S_w)$, $k_{r\alpha}$ = $k_{r\alpha}(S_w)$ * Physical constraints: $S_w + S_n = 1$ and $\sum_\kappa X_\alpha^\kappa = 1$ * Primary variables: depending on the phase state ## 2pncmin * Transport equation for each component $\kappa \in \{w, n, ...\}$ in phase $\alpha \in \{w, n\}$ $\begin{aligned}\frac{\partial \left( \sum_\alpha \varrho_\alpha X_\alpha^\kappa \phi S_\alpha \right)}{\partial t} &- \sum_\alpha \text{div} \left\lbrace \varrho_\alpha X_\alpha^\kappa \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left( \textbf{grad}\, p_\alpha - \varrho_\alpha \mathbf{g} \right) \right\rbrace \\ &- \sum_\alpha \text{div} \left\lbrace \mathbf{D_{\alpha, pm}^\kappa} \varrho_\alpha \textbf{grad}\, X^\kappa_\alpha \right\rbrace = \sum_\alpha q_\alpha^\kappa \end{aligned}$ * Mass balance solid or mineral phases $\frac{\partial \left(\varrho_\lambda \phi_\lambda \right)}{\partial t} = q_\lambda \quad \forall \lambda \in \Lambda$ * for a set of solid phases $\Lambda$ each with volume fraction $\varrho_\lambda$ * source term models **dissolution** / **precipiation** / **phase transition** fluid ↔ solid ## 3p -- three-phase * Uses standard multi-phase Darcy approach for the conservation of momentum * Conservation of the phase mass of phase $\alpha \in \{w, g, n\}$ $\frac{\partial \left( \phi \varrho_\alpha S_\alpha \right)}{\partial t} - \text{div} \left\lbrace \varrho_\alpha \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\textbf{grad}\, p_\alpha - \varrho_\alpha \mathbf{g} \right) \right\rbrace = q_\alpha$ * Physical constraint: $S_w + S_n + S_g = 1$ * Primary variables: $p_g$, $S_w$, $S_n$ ## 3p3c * Transport equation for each component $\kappa \in \{w, a, c\}$ in phase $\alpha \in \{w, g, n\}$ $\begin{aligned}\frac{\partial \left( \phi \sum_\alpha \varrho_{\alpha,mol} x_\alpha^\kappa S_\alpha \right)}{\partial t} &- \sum_\alpha \text{div} \left\lbrace \frac{k_{r\alpha}}{\mu_\alpha} \varrho_{\alpha,mol} x_\alpha^\kappa \mathbf{K} \left(\textbf{grad}\, p_\alpha - \varrho_{\alpha,mass} \mathbf{g} \right) \right\rbrace \\ &- \sum_\alpha \text{div} \left\lbrace D_\text{pm}^\kappa \frac{1}{M_\kappa} \varrho_\alpha \textbf{grad} X^\kappa_{\alpha} \right\rbrace = q^\kappa \end{aligned}$ * Physical constraints: $\sum_\alpha S_\alpha = 1$ and $\sum_\kappa x^\kappa_\alpha = 1$ * Primary variables: depend on the locally present fluid phases ## Non-Isothermal (equilibrium) * Local thermal equilibrium assumption * One energy conservation equation for the porous solid matrix and the fluids $\begin{aligned}\frac{\partial \left( \phi \sum_\alpha \varrho_\alpha u_\alpha S_\alpha \right)}{\partial t} &+ \frac{\partial \left(\left(1 - \phi \right)\varrho_s c_s T \right)}{\partial t} \\ &- \sum_\alpha \text{div} \left\lbrace \varrho_\alpha h_\alpha \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\textbf{grad}\, p_\alpha - \varrho_\alpha \mathbf{g} \right) \right\rbrace \\ &- \text{div} \left(\lambda_{pm} \textbf{grad}\, T \right) = q^h \end{aligned}$ * specific internal energy $u_\alpha = h_\alpha - p_\alpha / \varrho_\alpha$ * can be added to other models, additional primary variable temperature $T$ ## Free flow (Navier-Stokes) * Stokes equation * Navier-Stokes equations * Energy and component transport ## Reynolds-Averaged Navier-Stokes (RANS) * Momentum balance equation for a single-phase, isothermal RANS model $\frac{\partial \left(\varrho \textbf{v} \right)}{\partial t} + \nabla \cdot \left(\varrho \textbf{v} \textbf{v}^{\text{T}} \right) = \nabla \cdot \left(\mu_\textrm{eff} \left(\nabla \textbf{v} + \nabla \textbf{v}^{\text{T}} \right) \right)$ $- \nabla p + \varrho \textbf{g} - \textbf{f}$ * The effective viscosity is composed of the fluid and the eddy viscosity $\mu_\textrm{eff} = \mu + \mu_\textrm{t}$ * Various turbulence models are implemented ## Your model equations? # Spatial Discretization ## Cell-centered Finite Volume Methods * Elements of the grid are used as control volumes * Discrete **values** represent control volume average * **Two-point flux approximation (TPFA)** * Simple and robust but not always consistent * **Multi-point flux approximation (MPFA)** * A consistent discrete gradient is constructed ## Two-Point Flux Approximation (TPFA) <img src="img/tpfa.png" width="75%"/> ## Multi-Point Flux Approximation (MPFA) <img src="img/mpfa.png" width="80%"/> ## Control-volume finite element methods * Model domain is discretized using a **FE** mesh * Secondary **FV** mesh is constructed → control volume/**box** * Control volumes (CV) split into sub control volumes (SCVs) * Faces of CV split into sub control volume faces (SCVFs) * Unites advantages of finite-volume (simplicity) and finite-element methods (flexibility) * **Unstructured grids** (from FE method) * **Mass conservation** (from FV method) ## Box method Vertex-centered finite volumes / control volume finite element method with piecewise linear polynomial functions ($\mathrm{P}_1/\mathrm{Q}_1$) <img src="img/box.png" width="70%"/> ## Finite Volume method on staggered grid * Uses a finite volume method with different staggered control volumes for different equations * Fluxes are evaluated with a two-point flux approximation * **Robust** and **mass conservative** * Restricted to **structured grids** (tensor-product structure) ## Staggered grid discretization <img src="img/staggered_grid.png"/> # Model Components ## Model Components * Typically, the following components have to be specified * **Model**: Equations and constitutive models * **Assembler**: Key properties (Discretization, Variables, LocalResidual) * **Solver**: Type of solution stategy (e.g. Newton) * **LinearSolver**: Method for solving linear equation systems (e.g. direct / Krylov subspace methods) * **Problem**: Initial and boundary conditions, source terms * **TimeLoop**: For time-dependent problems * **VtkOutputModule** / **IOFields**: For VTK output of the simulation # Simulation Flow ## Simulation Flow <img src="img/simulation_flow.png"/>