// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /***************************************************************************** * See the file COPYING for full copying permissions. * * * * This program is free software: you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation, either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * *****************************************************************************/ /*! * \file * \brief The main file for the two-phase porousmediumflow problem of exercise-basic */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // The properties file, where the compile time options are defined #include "properties2p.hh" //////////////////////// // the main function //////////////////////// int main(int argc, char** argv) { using namespace Dumux; // define the type tag for this problem using TypeTag = Properties::TTag::Injection2pCC; // initialize MPI, finalize is done automatically on exit const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv); // print dumux start message if (mpiHelper.rank() == 0) DumuxMessage::print(/*firstCall=*/true); // parse command line arguments and input file Parameters::init(argc, argv); // try to create a grid (from the given grid file or the input file) GridManager> gridManager; gridManager.init(); //////////////////////////////////////////////////////////// // run instationary non-linear problem on this grid //////////////////////////////////////////////////////////// // we compute on the leaf grid view const auto& leafGridView = gridManager.grid().leafGridView(); // create the finite volume grid geometry using FVGridGeometry = GetPropType; auto fvGridGeometry = std::make_shared(leafGridView); fvGridGeometry->update(); // the problem (initial and boundary conditions) using Problem = GetPropType; auto problem = std::make_shared(fvGridGeometry); // the solution vector using SolutionVector = GetPropType; SolutionVector x; problem->applyInitialSolution(x); auto xOld = x; // the grid variables using GridVariables = GetPropType; auto gridVariables = std::make_shared(problem, fvGridGeometry); gridVariables->init(x); // get some time loop parameters using Scalar = GetPropType; const auto tEnd = getParam("TimeLoop.TEnd"); const auto maxDt = getParam("TimeLoop.MaxTimeStepSize"); auto dt = getParam("TimeLoop.DtInitial"); // intialize the vtk output module using IOFields = GetPropType; // use non-conforming output for the test with interface solver const auto ncOutput = getParam("Problem.UseNonConformingOutput", false); VtkOutputModule vtkWriter(*gridVariables, x, problem->name(), "", ncOutput ? Dune::VTK::nonconforming : Dune::VTK::conforming); using VelocityOutput = GetPropType; vtkWriter.addVelocityOutput(std::make_shared(*gridVariables)); IOFields::initOutputModule(vtkWriter); //!< Add model specific output fields vtkWriter.write(0.0); // instantiate time loop auto timeLoop = std::make_shared>(0.0, dt, tEnd); timeLoop->setMaxTimeStepSize(maxDt); // the assembler with time loop for instationary problem using Assembler = FVAssembler; auto assembler = std::make_shared(problem, fvGridGeometry, gridVariables, timeLoop, xOld); // the linear solver using LinearSolver = AMGBiCGSTABBackend>; auto linearSolver = std::make_shared(leafGridView, fvGridGeometry->dofMapper()); // the non-linear solver using NewtonSolver = Dumux::NewtonSolver; NewtonSolver nonLinearSolver(assembler, linearSolver); // time loop timeLoop->start(); while (!timeLoop->finished()) { // set previous solution for storage evaluations assembler->setPreviousSolution(xOld); //set time in problem (is used in time-dependent Neumann boundary condition) problem->setTime(timeLoop->time()+timeLoop->timeStepSize()); // solve the non-linear system with time step control nonLinearSolver.solve(x, *timeLoop); // make the new solution the old solution xOld = x; gridVariables->advanceTimeStep(); // advance to the time loop to the next step timeLoop->advanceTimeStep(); // report statistics of this time step timeLoop->reportTimeStep(); // set new dt as suggested by the newton solver timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize())); // output to vtk vtkWriter.write(timeLoop->time()); } timeLoop->finalize(leafGridView.comm()); //////////////////////////////////////////////////////////// // finalize, print dumux message to say goodbye //////////////////////////////////////////////////////////// // print dumux end message if (mpiHelper.rank() == 0) { Parameters::print(); DumuxMessage::print(/*firstCall=*/false); } return 0; } // end main