--- title: Introduction to DuMu^x^ subtitle: Overview and Available Models --- # Table of Contents ## Table of Contents 1. [Structure and Development History](#structure-and-development-history) 2. [Mathematical Models](#available-models) 3. [Spatial Discretization](#spatial-discretization) 4. [Model Components](#model-components) 5. [Simulation Flow](#simulation-flow) # Structure and Development History ## DuMu^x^ is a DUNE module <img src="img/dumux_dune_module.png"/> ## The DUNE Framework * **Developed** by scientists at around 10 European research institutions. * **Separation** of data structures and algorithms by abstract interfaces. * Efficient implementation using **generic** programming techniques. * **Reuse** of existing FE packages with a large body of functionality. * Current stable release: **2.9** (November 2022). ## DUNE Core Modules * **dune-common:** basic classes * **dune-geometry:** geometric entities * **dune-grid:** abstract grid/mesh interface * **dune-istl:** iterative solver template library * **dune-localfunctions:** finite element shape functions ## Overview <img src="img/dumux.png" width="300"/> * **DuMu^x^:** DUNE for Multi-{Phase, Component, Scale, Physics, $\text{...}$} flow and transport in porous media. * **Goal:** **sustainable, consistent, research-friendly framework** for the implementation and application of **FV discretization schemes**, **model concepts**, and **constitutive relations**. * **Developed** by more than 30 PhD students and post docs, mostly at LH^2^ (Uni Stuttgart). ## Applications <div style="text-align: left"> **Successfully applied** to </div> * gas (CO~2~, H~2~, CH~4~, $\text{...}$) storage scenarios * environmental remediation problems * transport of substances in biological tissue * subsurface-atmosphere coupling (Navier-Stokes / Darcy) * flow and transport in fractured porous media * root-soil interaction * pore-network modelling * developing new finite volume schemes ## DuMu^x^ Modules * [**dumux-lecture**](https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-lecture): example applications for lectures offered by LH^2^, Uni Stuttgart * [**dumux-pub/---**](https://git.iws.uni-stuttgart.de/dumux-pub): code and data accompanying a publication (reproduce and archive results) * [**dumux-appl/---**](https://git.iws.uni-stuttgart.de/dumux-appl): Various application modules (many not publicly available, e.g. ongoing research) ## Development History * 01/2007: Development **starts**. * 07/2009: Release **1.0**. * 09/2010: **Split** into stable and development part. * 12/2010: Anonymous **read access** to the **SVN** trunk of the stable part. * 02/2011: Release **2.0,** $\text{...}$, 10/2017: Release **2.12**. * 09/2015: Transition from Subversion to **Git**. * 12/2018: Release **3.0,** $\text{...}$, 07/2024: Release **3.9**. ## Funding Efforts mainly funded through ressources at the LH^2^: [Department of Hydromechanics and Modelling of Hydrosystems at the University of Stuttgart](https://www.iws.uni-stuttgart.de/en/lh2/) and third-party funding aquired at the LH^2^ <img src="img/lh2.jpeg" width="300"/> ## Funding We acknowledge funding that supported the development of DuMu^x^ in past and present: <img src="img/funding.svg" width="550"/> ## Downloads and Publications * More than 1000 unique release **downloads**. * More than 250 peer-reviewed [**publications**](https://puma.ub.uni-stuttgart.de/group/dumux/dumuxarticle?resourcetype=publication&items=1000&sortPage=year) and [PhD theses](https://puma.ub.uni-stuttgart.de/group/dumux/dumuxphd?resourcetype=publication&items=1000&sortPage=year) using DuMu^x^. ## Evolution of C++ Files <img src="img/files_vs_releases.png" width="600"/> ## Evolution of Code Lines <img src="img/lines_vs_releases.png" width="600"/> ## Folder structure ```code dumux ├── build-cmake │ ├── examples │ ├── test │ ├── ... ├── doc ├── dumux ├── examples ├── test └── ... ``` * Further details can be found in the corresponding [documentation](https://dumux.org/docs/doxygen/master/directory-structure.html) ## Mailing Lists and GitLab * **Mailing lists** of DUNE (<dune@dune-project.org>) and DuMu^x^ (<dumux@listserv.uni-stuttgart.de>) * GitLab **Issue Tracker** (<https://git.iws.uni-stuttgart.de/dumux-repositories/dumux/issues>) * Get **GitLab** accounts (non-anonymous) for better access * DUNE GitLab (<https://gitlab.dune-project.org/core>) * DuMu^x^ GitLab (<https://git.iws.uni-stuttgart.de/dumux-repositories/dumux>) ## Documentation * Code **documentation** * DuMu^x^ (<https://dumux.org/docs/doxygen/master/>) * DUNE (<https://dune-project.org/doxygen/>) * DuMu^x^ **Examples** (<https://git.iws.uni-stuttgart.de/dumux-repositories/dumux/-/tree/master/examples#examples>) * DuMu^x^ **Website** (<https://dumux.org/>) # Mathematical Models ## Mathematical Models Preimplemented models: * **Flow in porous media (Darcy)**: Single and multi-phase models for flow and transport in porous materials. * **Free flow (Navier-Stokes)**: Single-phase models based on the Navier-Stokes equations. * **Shallow water flow**: Two-dimensional shallow water flow (depth-averaged). * **Geomechanics**: Models taking into account solid deformation of porous materials. * **Pore network**: Single and multi-phase models for flow and transport in pore networks. ## Flow in Porous Media <img src="img/models.png" width="650"/> ## Darcy's law * Describes the advective flux in porous media on the macro-scale * Single-phase flow $$ \mathbf{v} = - \frac{\mathbf{K}}{\mu} \left(\textbf{grad}\, p - \varrho \mathbf{g} \right) $$ * Multi-phase flow (phase $\alpha$) $$ \mathbf{v}_\alpha = - \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\textbf{grad}\, p_\alpha - \varrho_\alpha \mathbf{g} \right) $$ where $k_{r\alpha}(S_\alpha)$ is the relative permeability, a function of saturation $S_\alpha$. * For non-creeping flow, Forchheimer's law is available as an alternative. ## 1p -- Single-Phase * Uses standard Darcy approach for the conservation of momentum by default * Mass continuity equation $$ \frac{\partial\left( \phi \varrho \right)}{\partial t} + \text{div} \left( \varrho \mathbf{v} \right) = q $$ * Primary variable: $p$ * Further details can be found in the corresponding [documentation](https://dumux.org/docs/doxygen/master/group___one_p_model.html) ## 1pnc -- Single-Phase, Multi-Component * Uses standard Darcy approach for the conservation of momentum by default * Transport of component $\kappa \in \{\text{H2O}, \text{Air}, ...\}$ $$ \frac{\partial\left( \phi \varrho X^\kappa \right)}{\partial t} + \text{div} \left( \varrho X^\kappa \mathbf{v} - \varrho D^\kappa_\text{pm} \textbf{grad} X^\kappa \right) = q $$ * Closure relation: $\sum_\kappa X^\kappa = 1$ * Primary variables: $p$ and $X^\kappa$ * Further details can be found in the corresponding [documentation](https://dumux.org/docs/doxygen/master/group___one_p_n_c_model.html) ## 1pncmin -- with Fluid-Solid Phase Change * Transport equation for each component $\kappa \in \{\text{H2O}, \text{Air}, ...\}$ $$ \frac{\partial \left( \varrho_f X^\kappa \phi \right)}{\partial t} + \text{div} \left( \varrho_f X^\kappa \mathbf{v} - \mathbf{D_\text{pm}^\kappa} \varrho_f \textbf{grad}\, X^\kappa \right) = q_\kappa $$ * Mass balance solid phases $$ \frac{\partial \left(\varrho_\lambda \phi_\lambda \right)}{\partial t} = q_\lambda $$ * Primary variables: $p$, $X^k$ and $\phi_\lambda$ * Further details can be found in the corresponding [documentation](https://dumux.org/docs/doxygen/master/group___one_p_n_c_min_model.html) ## 2p -- Two-Phase Immiscible * Uses standard multi-phase Darcy approach for the conservation of momentum by default * Conservation of the phase mass of phase $\alpha \in \{\text{w}, \text{n}\}$ $$ \frac{\partial \left(\phi \varrho_\alpha S_\alpha \right)}{\partial t} + \text{div} \left(\varrho_\alpha \mathbf{v}_\alpha \right) = q_\alpha $$ * Constitutive relations: $p_\text{c} := p_\text{n} - p_\text{w} = p_\text{c}(S_\text{w})$, $k_{r\alpha}$ = $k_{r\alpha}(S_\text{w})$ * Physical constraint (void space filled with fluid phases): $S_\text{w} + S_\text{n} = 1$ * Primary variables: $p_\text{w}$, $S_\text{n}$ or $p_\text{n}$, $S_\text{w}$ * Further details can be found in the corresponding [documentation](https://dumux.org/docs/doxygen/master/group___two_p_model.html) ## 2pnc -- Two-Phase Compositional * Transport equation for each component $\kappa \in \{\text{H2O}, \text{Air}, ...\}$ in phase $\alpha \in \{\text{w}, \text{n}\}$ $$ \begin{aligned} \frac{\partial \left( \sum_\alpha \varrho_\alpha X_\alpha^\kappa \phi S_\alpha \right)}{\partial t} &+ \sum_\alpha \text{div}\left( \varrho_\alpha X_\alpha^\kappa \mathbf{v}_\alpha - \mathbf{D_{\alpha, pm}^\kappa} \varrho_\alpha \textbf{grad}\, X^\kappa_\alpha \right) = \sum_\alpha q_\alpha^\kappa \end{aligned} $$ * Constitutive relation: $p_\text{c} := p_\text{n} - p_\text{w} = p_\text{c}(S_\text{w})$, $k_{r\alpha}$ = $k_{r\alpha}(S_\text{w})$ * Physical constraints: $S_\text{w} + S_\text{n} = 1$ and $\sum_\kappa X_\alpha^\kappa = 1$ * Primary variables: depending on the phase state * Further details can be found in the corresponding [documentation](https://dumux.org/docs/doxygen/master/group___two_p_n_c_model.html) ## 2pncmin * Transport equation for each component $\kappa \in \{\text{H2O}, \text{Air}, ...\}$ $$ \begin{aligned} \frac{\partial \left( \sum_\alpha \varrho_\alpha X_\alpha^\kappa \phi S_\alpha \right)}{\partial t} &+ \sum_\alpha \text{div}\left( \varrho_\alpha X_\alpha^\kappa \mathbf{v}_\alpha - \mathbf{D_{\alpha, pm}^\kappa} \varrho_\alpha \textbf{grad}\, X^\kappa_\alpha \right)= \sum_\alpha q_\alpha^\kappa \end{aligned} $$ * Mass balance solid phases $$ \frac{\partial \left(\varrho_\lambda \phi_\lambda \right)}{\partial t} = q_\lambda \quad \forall \lambda \in \Lambda $$ for a set of solid phases $\Lambda$ each with volume fraction $\varrho_\lambda$ * Source term models **dissolution/precipiation/phase transition** fluid ↔ solid * Further details can be found in the corresponding [documentation](https://dumux.org/docs/doxygen/master/group___two_p_n_c_min_model.html) ## 3p -- Three-Phase Immiscible * Uses standard multi-phase Darcy approach for the conservation of momentum by default * Conservation of the phase mass of phase $\alpha \in \{\text{w}, \text{g}, \text{n}\}$ $$ \frac{\partial \left( \phi \varrho_\alpha S_\alpha \right)}{\partial t} - \text{div} \left( \varrho_\alpha \mathbf{v}_\alpha \right) = q_\alpha $$ * Physical constraint: $S_\text{w} + S_\text{n} + S_g = 1$ * Primary variables: $p_\text{g}$, $S_\text{w}$, $S_\text{n}$ * Further details can be found in the corresponding [documentation](https://dumux.org/docs/doxygen/master/group___three_p_model.html) ## 3p3c -- Three-Phase Compositional * Transport equation for each component $\kappa \in \{\text{H2O}, \text{Air}, \text{NAPL}\}$ in phase $\alpha \in \{\text{w}, \text{g}, \text{n}\}$ $$ \begin{aligned} \frac{\partial \left( \phi \sum_\alpha \varrho_{\alpha,\text{mol}} x_\alpha^\kappa S_\alpha \right)}{\partial t}&+ \sum_\alpha \text{div} \left( \varrho_{\alpha,\text{mol}} x_\alpha^\kappa \mathbf{v}_\alpha - D_\text{pm}^\kappa \frac{1}{M_\kappa} \varrho_\alpha \textbf{grad} X^\kappa_{\alpha} \right) = q^\kappa \end{aligned} $$ * Physical constraints: $\sum_\alpha S_\alpha = 1$ and $\sum_\kappa x^\kappa_\alpha = 1$ * Primary variables: depend on the locally present fluid phases * Further details can be found in the corresponding [documentation](https://dumux.org/docs/doxygen/master/group___three_p_three_c_model.html) ## Other Porous-Medium Flow Models * For other porous-medium flow models, we refer to the Doxygen documentation: - [2p1c](https://dumux.org/docs/doxygen/master/group___two_p_one_c_model.html) - [2p2c](https://dumux.org/docs/doxygen/master/group___two_p_two_c_model.html) - [3pwateroil](https://dumux.org/docs/doxygen/master/group___three_p_water_oil_model.html) - [co2](https://dumux.org/docs/doxygen/master/group___c_o2_model.html) - [mpnc](https://dumux.org/docs/doxygen/master/group___m_p_n_c_model.html) - [nonequilibrium](https://dumux.org/docs/doxygen/master/group___non_equilibrium_model.html) - [richards](https://dumux.org/docs/doxygen/master/group___richards_model.html) - [richardsnc](https://dumux.org/docs/doxygen/master/group___richards_n_c_model.html) - [tracer](https://dumux.org/docs/doxygen/master/group___tracer_model.html) ## Non-Isothermal (Equilibrium) * Local thermal equilibrium assumption * One energy conservation equation for the porous solid matrix and the fluids $$ \begin{aligned}\frac{\partial \left( \phi \sum_\alpha \varrho_\alpha u_\alpha S_\alpha \right)}{\partial t} &+ \frac{\partial \left(\left(1 - \phi \right)\varrho_s c_s T \right)}{\partial t} + \sum_\alpha \text{div} \left( \varrho_\alpha h_\alpha \mathbf{v}_\alpha \right) - \text{div} \left(\lambda_\text{pm} \textbf{grad}\, T \right) = q^h \end{aligned} $$ * Specific internal energy $u_\alpha = h_\alpha - p_\alpha / \varrho_\alpha$ * Can be added to other models, additional primary variable temperature $T$ * Further details can be found in the corresponding [documentation](https://dumux.org/docs/doxygen/master/group___n_i_model.html) ## Free Flow (Navier-Stokes) * Stokes equation * Navier-Stokes equations * Energy and component transport ## Reynolds-Averaged Navier-Stokes (RANS) * Momentum balance equation for a single-phase, isothermal RANS model $$ \frac{\partial \left(\varrho \textbf{v} \right)}{\partial t} + \nabla \cdot \left(\varrho \textbf{v} \textbf{v}^{\text{T}} \right) = \nabla \cdot \left(\mu_\textrm{eff} \left(\nabla \textbf{v} + \nabla \textbf{v}^{\text{T}} \right) \right) - \nabla p + \varrho \textbf{g} - \textbf{f} $$ * The effective viscosity is composed of the fluid and the eddy viscosity $$ \mu_\textrm{eff} = \mu + \mu_\textrm{t} $$ * Various turbulence models are implemented * More details can be found in the [Doxygen documentation](https://dumux.org/docs/doxygen/master/group___freeflow_models.html) ## Other Models * For other models, we refer to the Doxygen documentation: - [Shallow water](https://dumux.org/docs/doxygen/master/group___shallow_water_models.html) - [Geomechanics](https://dumux.org/docs/doxygen/master/group___geomechanics_models.html) - [Pore network](https://dumux.org/docs/doxygen/master/group___pore_network_models.html) ## Your Model Equations? # Spatial Discretization ## Cell-centered Finite Volume Methods * Elements of the grid are used as control volumes * Discrete **values** represent control volume average * **Two-point flux approximation (TPFA)** * Simple and robust but not always consistent * **Multi-point flux approximation (MPFA)** * A consistent discrete gradient is constructed ## Two-Point Flux Approximation (TPFA) <img src="img/cctpfa.png" width="75%"/> ## Multi-Point Flux Approximation (MPFA) <img src="img/ccmpfa.png" width="80%"/> ## Control-Volume Finite Element Methods * Model domain is discretized using a **FE** mesh * Secondary **FV** mesh is constructed → control volume/**box** * Control volumes (CV) split into sub control volumes (SCVs) * Faces of CV split into sub control volume faces (SCVFs) * Unites advantages of finite-volume (simplicity) and finite-element methods (flexibility) * **Unstructured grids** (from FE method) * **Mass conservation** (from FV method) ## Box Method Vertex-centered finite volumes / control volume finite element method with piecewise linear polynomial functions ($\mathrm{P}_1/\mathrm{Q}_1$) <img src="img/box.png" width="70%"/> ## Diamond Scheme Face-centered finite-volume scheme based on non-conforming finite-element spaces <img src="img/fcdiamond.png" width="70%"/> ## PQ1 Bubble Scheme Control-volume finite element scheme based on $\mathrm{P}_1/\mathrm{Q}_1$ basis functions with enrichment by a bubble function <img src="img/pq1bubble.png" width="70%"/> ## Finite Volume Method on Staggered Control Volumes * Uses a finite volume method with different staggered control volumes for different equations * Fluxes are evaluated with a two-point flux approximation * **Robust** and **mass conservative** * Restricted to **structured grids** (tensor-product structure) ## Staggered Grid Discretization <img src="img/fcstaggered.png"/> # Model Components ## Model Components * Typically, the following components have to be specified * **Model**: Equations and constitutive models * **Assembler**: Key properties (Discretization, Variables, LocalResidual) * **Solver**: Type of solution stategy (e.g. Newton) * **LinearSolver**: Method for solving linear equation systems (e.g. direct / Krylov subspace methods) * **Problem**: Initial and boundary conditions, source terms * **TimeLoop**: For time-dependent problems * **VtkOutputModule** / **IOFields**: For VTK output of the simulation # Simulation Flow ## Simulation Flow <img src="img/simulation_flow.png"/>