--- title: Coupled Free-Flow and Porous Media Flow Models in DuMu^x^ --- # Motivation ## Environmental and Agricultural Issues :::::: {.columns} ::: {.column width=65%} <img src="img/FFPM_radiation.gif"/> <small>Fig.1 - Evaporation of soil water (Heck et al. (2020))<sup>1</sup></small> ::: ::: {.column width=35%} * Evaporation of soil water * Soil salinization * Underground storage (e.g. CO2, atomic waste) ::: :::::: ## Technical Issues :::::: {.columns} ::: {.column width=50%}  <small style="text-align: center;">Fig.2 - Filter (Schneider et al. (2023))<sup>2</sup></small> ::: ::: {.column width=50%} * Fuel cells * Filters (e.g. air) * Heat exchangers (e.g. CPU cooling) ::: :::::: ## Biological Issues :::::: {.columns} ::: {.column width=28%} <img src="img/FFPM_braintissue.png"/> <small>Fig.3 - Brain tissue (Koch et al. (2020))<sup>3</sup></small> ::: ::: {.column width=50%} * Brain tissue * Leaf structure ::: :::::: # Model Overview ## Conceptual Physical Model {style="width: 80%; align: left;"} <figcaption align = "center"> <font size = "2"> Fig.5 - Exchange processes at the free-flow porous-medium interface at different scales (Photo: Martin Schneider) </font> </figcaption> ## Mathematical Model :::::: {.columns} ::::: {.column width=15%}  ::::: ::::: {.column width=85%} **Free Flow:** <font size=5.9> * Stokes / Navier-Stokes / RANS * 1-phase, n-components, non-isothermal </font> **Interface conditions:** <font size=5.9> * no thickness, no storage, local thermal equilibrium * continuity of fluxes and state variables </font> **Porous media:** <font size=5.9> * Darcy / Forchheimer * m-phases, n-components, non-isothermal </font> ::::: :::::: ## Numerical Model <img src=img/FFPM-numericalmodel.png width="25%"> <figcaption align = "center"> <font size = "2"> Fig.6 - Discretization scheme (Fetzer (2018))<sup>4</sup> </font> </figcaption> # Exercises ## Exercise Tasks 1. __Interface__ - Change flow direction - Introduce slip condition - Change shape of interface 2. __Porous Medium Model__ - Use 2-phase multicomponent model - Investigate and export water loss and visualize it 3. __Free-Flow region__ - Introduce a turbulence model - Use symmetry boundary conditions - Apply grid refinement towards interface # <small> Supplementary Material</small> </br>Model equations ## Eqs - Free Flow :::::: {.columns} ::::: {.column width=15%}  ::::: ::::: {.column width=85%} * Momentum balance (Navier-Stokes equation) $$ \frac{\partial \left(\rho_g \textbf{v}_g\right)}{\partial t} + \nabla \cdot (\rho_g \textbf{v}_g \textbf{v}_g^T) - \nabla \cdot \mathbf{\tau}_g +\nabla \cdot (p_g\textbf{I})- \rho_g \textbf{g} = 0 $$ * Component mass balance $$ \frac{\partial \left(\rho_g X^\kappa_g\right)}{\partial t} + \nabla \cdot \left( \rho_g X^\kappa_g \textbf{v}_g + \mathbf{j}_{\text{diff}}^\kappa\right) - q^\kappa = 0 $$ ::::: :::::: ## Eqs - Free Flow :::::: {.columns} ::::: {.column width=15%}  ::::: ::::: {.column width=85%} * Energy balance $$ \begin{aligned} \frac{\partial (\rho_g u_g) }{\partial t} + \nabla \cdot (\rho_g h_g \textbf{v}_g) &+ \sum_{\kappa} {\nabla \cdot (h_g^\kappa \textbf{j}_{\text{diff}}^\kappa)} \\ &- \nabla \cdot (\lambda_{g} \nabla T) = 0 \end{aligned} $$ ::::: :::::: ## Eqs - Porous Medium Flow :::::: {.columns} ::::: {.column width=15%}  ::::: ::::: {.column width=90%} * Darcy velocity (momentum balance) $$ \textbf{v}_\alpha = - \frac{k_{r,\alpha}}{\mu_\alpha} K \left(\nabla p_\alpha - \rho_\alpha \textbf{g}\right) $$ * Component mass balance $$ \sum\limits_{\alpha \in \{\text{l, g} \}} \left(\phi \frac{\partial \left(\rho_\alpha S_\alpha X_\alpha^\kappa\right)}{\partial t } + \nabla \cdot \rho_\alpha X_\alpha^\kappa \textbf{v}_\alpha + \nabla \cdot \mathbf{j}_{\text{diff}}^\kappa\right) = 0 $$ ::::: :::::: ## Eqs - Porous Medium Flow :::::: {.columns} ::::: {.column width=15%}  ::::: ::::: {.column width=90%} * Total energy balance $$ \begin{aligned} \sum\limits_{\alpha \in \{\text{l, g} \}} &\left(\phi\frac{\partial \left(\rho_\alpha S_\alpha u_\alpha\right)}{\partial t} + \nabla \cdot \left(\rho_\alpha h_\alpha \textbf{v}_\alpha \right)\right) \\ &+ \left(1-\phi\right) \frac{\partial \left(\rho_s c_{p,s}T\right)}{\partial t} - \nabla\cdot \left(\lambda_{pm} \nabla T \right) = 0 \end{aligned} $$ ::::: :::::: ## Eqs - Coupling Conditions :::::: {.columns} ::::: {.column width=15%}  ::::: ::::: {.column width=85%} * Continuity of total mass flux $$ [(\rho_g \textbf{v}_g) \cdot \textbf{n}]^{\text{ff}} = - [(\rho_g \textbf{v}_g + \rho_w \textbf{v}_w) \cdot \textbf{n}]^{\text{pm}} $$ * Continuity of component flux $$ \begin{aligned} &\left[(\rho_g X_g^\kappa \textbf{v}_g + \textbf{j}_{\text{diff}^\kappa}) \cdot \textbf{n}\right]^{\text{ff}} = \\&- \left[\left( \sum_{\alpha} (\rho_{\alpha} X_{\alpha}^\kappa \textbf{v}_\alpha + \textbf{j}^\kappa_{\text{diff}, \alpha})\right) \cdot \textbf{n}\right]^{\text{pm}}\, \end{aligned} $$ ::::: :::::: ## Eqs - Coupling Conditions :::::: {.columns} ::::: {.column width=15%} <img src="img/FFPM-couplingsymbol.png"> <figure> <img src="img/FFPM-BJS.png" alt="BJS Symbol"> <figcaption style="font-size: small; text-align: left;">Beaver-Joseph slip condition</figcaption> </figure> ::::: ::::: {.column width=85%} * Momentum condition in normal direction $$ \left[((\rho_g \textbf{v}_g \textbf{v}_g^T - \mathbf{\tau}_g + p_g\textbf{I}) \textbf{n} )\right]^{\text{ff}} = \left[(p_g\textbf{I})\textbf{n}\right]^{\text{pm}}\, $$ * Momentum condition in tangential direction $$ \begin{aligned} \left[\left(- \textbf{v}_g - \frac{\sqrt{(\textbf{K}\textbf{t}_i)\cdot \textbf{t}_i}}{\alpha_{\mathrm{BJ}}} (\nabla \textbf{v}_g + \nabla \textbf{v}_g^T)\textbf{n} \right) \cdot \textbf{t}_i \right]^{\text{ff}} = 0\, , \\ \quad i \in \{1, .. ,\, d-1\}\, \end{aligned} $$ ::::: :::::: ## Eqs - Coupling Conditions :::::: {.columns} ::::: {.column width=15%}  ::::: ::::: {.column width=85%} * Continuity of energy fluxes <font size = "5"> $$ \begin{aligned} \left[\left(\rho_g h_g \textbf{v}_g + \sum_i h_g^\kappa \textbf{j}_{\text{diff},g}^\kappa - \lambda_{g} \nabla T\right)\cdot \textbf{n}\right]^{\text{ff}} =\\ - \left[\left( \sum_\alpha (\rho_\alpha h_\alpha \textbf{v}_\alpha + \sum_\kappa h_\alpha^\kappa \textbf{j}_{\text{diff},\alpha}^\kappa) - \lambda_{\text{pm}}\nabla T\right)\cdot \textbf{n}\right]^{\text{pm}}\, \end{aligned} $$ </font> ::::: :::::: # <small> Supplementary Material</small> </br>Example: Soil-Water Evaporation ## Example: Soil-Water Evaporation :::::: {.columns} ::::: {.column width=50%} <img src=img/FFPM-TurbulentBoundaryLayer.png width="80%"> ::::: ::::: {.column width=50%} <img src=img/FFPM-SoilWaterEvapField.png width="80%"> <figcaption align = "center"> <font size = "2"> Fig.7 - Evaporation in the water cycle (Shahraeeni et al. (2012))<sup>5</sup> </font> </figcaption> ::::: :::::: ## Example: Soil-Water Evaporation <img src=img/FFPM-evapStages.png width="60%"> <figcaption align = "center"> <font size = "2"> Fig.8 - Different evaporation stages (Or et al.(2013))<sup>6</sup> </font> </figcaption> ## Example: Simple Evaporation Setup {style="width: 60%; margin: auto; float: left;"} <font size = "2"> Tab1: Input parameter </font> <font size = "5"> | Parameter | Value | |:----------------------------|--------------:| | $\textbf{v}_g^{ff}$ [m/s] | (3.5,0)$^T$ | | $p_g^{ff}$ [Pa] | 1e5 | | $X_g^{w,ff}$ [-] | 0.008 | | $T^{ff}$ [K] | 298.15 | | $p_g^{pm}$ [Pa] | 1e5 | | $S_l^{pm}$ [-] | 0.98 | | $T^{pm}$ [K] | 298.15 | </font> <figcaption align = "left"> <font size = "2"> Fig.9 - Model setup (Fetzer (2018))<sup>4</sup> </font> </figcaption> ## Example: Results  <figcaption align = "center"> <font size = "2"> Fig.10 - Results: Evaporation from a simple setup (Fetzer (2018))<sup>4</sup> </font> </figcaption> # References ## <font size = "5"> 1. Heck, K., Coltman, E., Schneider, J. and Helmig, R. (2020). Influence of radiation on evaporation rates: A numerical analysis. Water Resources Research, 56, e2020WR027332. https://doi.org/10.1029/2020WR027332 2. Schneider, M., Gläser, D., Weishaupt, K., Coltman, E., Flemisch, B. and Helmig, R. (2023). Coupling staggered-grid and vertex-centered finite-volume methods for coupled porous-medium free-flow problems. Journal of Computational Physics. 112042. https://doi.org/10.1016/j.jcp.2023.112042. 3. Koch, T., Flemisch, B., Helmig, R., Wiest, R. and Obrist, D. (2020). A multiscale subvoxel perfusion model to estimate diffusive capillary wall conductivity in multiple sclerosis lesions from perfusion MRI data. Int J Numer Meth Biomed Engng. 36:e3298. https://doi.org/10.1002/cnm. 4. Fetzer, Thomas: Coupled Free and Porous-Medium Flow Processes Affected by Turbulence and Roughness – Models, Concepts and Analysis, Universität Stuttgart. - Stuttgart: Institut für Wasser- und Umweltsystemmodellierung, 2018 5. Shahraeeni, E., Lehmann, P. and Or, D. (2012). Coupling of evaporative fluxes from drying porous surfaces with air boundary layer: Characteristics of evaporation from discrete pores. Water Resources Research. 48. 9525-. 10.1029/2012WR011857. 6. Or, D., Lehmann, P., Shahraeeni, E. and Shokri, N. (2013), Advances in Soil Evaporation Physics—A Review. Vadose Zone Journal, 12: 1-16 vzj2012.0163. https://doi.org/10.2136/vzj2012.0163 </font>