Commit ee65a9c0 authored by Kilian Weishaupt's avatar Kilian Weishaupt
Browse files

Merge branch 'cleanup/nonwetting' into 'master'

[cleanup] Consistent spelling as nonwetting/Nonwetting

See merge request !137
parents b7627d45 93f053c0
......@@ -84,7 +84,7 @@ Figure \ref{boundarycond_fig} shows a sketch of the problem. The domain is initi
%\begin{table}%[ht!]
%\begin{tabular}[t]{llll}
%$\rho_n=$ & non-wetting phase density & $1.46 \cdot 10^{3}$ & [kg/m$^3$] \\
%$\rho_n=$ & nonwetting phase density & $1.46 \cdot 10^{3}$ & [kg/m$^3$] \\
%$\rho_w=$ & wetting phase density & $1.0 \cdot 10^{3}$ & [kg/m$^3$] \\
%$\Phi_1=$ & porosity in area one & $0.4$ & [-] \\
%$\Phi_2=$ & porosity in area two & $0.38$ & [-] \\
......
......@@ -90,7 +90,7 @@ The governing equations are derived in exercise two.
\item When does the gas phase reach the lower boundary? \\
{\em You can see how the gas quickly expands due to capillary diffusion and then stays immobile afterwards. The initial capillary pressure at the interface has to be larger than the entry pressure of the lower permeable layer. The capillary pressure depends on the saturation, i.e., only above a specific non-wetting phase saturation can the gas enter the layer. In this layer the capillary forces lead to a further radial distribution. If there exists a residual saturation the gas will probably not reach the lower boundary.}
{\em You can see how the gas quickly expands due to capillary diffusion and then stays immobile afterwards. The initial capillary pressure at the interface has to be larger than the entry pressure of the lower permeable layer. The capillary pressure depends on the saturation, i.e., only above a specific nonwetting phase saturation can the gas enter the layer. In this layer the capillary forces lead to a further radial distribution. If there exists a residual saturation the gas will probably not reach the lower boundary.}
\item How does a change of permeability, porosity, residual saturation or the Brooks-Corey parameters affect the breakthrough time? \\
{\em see above}
......@@ -169,7 +169,7 @@ Alltogether this leads to 15 unknowns and 13 equations plus the two transport eq
as long as $ 0 < S_\alpha < 1$.
\item Only wetting phase is present: The mass fraction of, e.g., N$_2$ in the wetting phase $X^n_l$ is used,
as long as the maximum mass fraction is not exceeded ($X^n_l<X^n_{l,max}$)
\item Only non-wetting phase is present: The mass fraction of, e.g., water in the non-wetting phase, $X^w_g$, is used,
\item Only nonwetting phase is present: The mass fraction of, e.g., water in the nonwetting phase, $X^w_g$, is used,
as long as the maximum mass fraction is not exceeded ($X^w_g<X^w_{g,max}$)
\end{itemize}
......
......@@ -18,9 +18,9 @@ FineBrooksCoreyEntryPressure = 400 # entry pressure for the Brooks-Core
CoarseBrooksCoreyLambda = 2.0 # pore size distribution parameter for the Brooks-Corey capillary pressure-saturation relationship in the coarse soil [-]
CoarseBrooksCoreyEntryPressure = 200 # entry pressure for the Brooks-Corey capillary pressure-saturation relationship in the coarse soil [Pa]
FineResidualSaturationWetting = 0.05 # residual saturation of the wetting phase in the fine soil [-]
FineResidualSaturationNonWetting = 0.3 # residual saturation of the non-wetting phase in the fine soil [-]
FineResidualSaturationNonwetting = 0.3 # residual saturation of the nonwetting phase in the fine soil [-]
CoarseResidualSaturationWetting = 0.05 # residual saturation of the wetting phase in the coarse soil [-]
CoarseResidualSaturationNonWetting = 0.1 # residual saturation of the non-wetting phase in the coarse soil [-]
CoarseResidualSaturationNonwetting = 0.1 # residual saturation of the nonwetting phase in the coarse soil [-]
[Boundary]
LowerPressure = 2.0e5 # Dirichlet pressure value for the boundary condition at the lower boundary [Pa]
......
......@@ -79,9 +79,9 @@ void usage(const char *progName, const std::string &errorMsg)
"\t-SpatialParams.CoarseBrooksCoreyEntryPressure The entry pressure for the Brooks-Corey\n"
"\t \t capillary pressure - saturation relationship in the coarse soil [Pa]\n"
"\t-SpatialParams.FineResidualSaturationWetting The residual saturation of the wetting phase in the fine soil [-]"
"\t-SpatialParams.FineResidualSaturationNonWetting The residual saturation of the non-wetting phase in the fine soil [-]\n"
"\t-SpatialParams.FineResidualSaturationNonwetting The residual saturation of the nonwetting phase in the fine soil [-]\n"
"\t-SpatialParams.CoarseResidualSaturationWetting The residual saturation of the wetting phase in the coarse soil [-]"
"\t-SpatialParams.CoarseResidualSaturationNonWetting The residual saturation of the non-wetting phase in the coarse soil [-]\n"
"\t-SpatialParams.CoarseResidualSaturationNonwetting The residual saturation of the nonwetting phase in the coarse soil [-]\n"
"\t-Boundary.LowerPressure The Dirichlet pressure value for the boundary condition at the lower boundary [Pa]\n"
"\t-Boundary.UpperPressure The Dirichlet pressure value for the boundary condition at the upper boundary [Pa]\n"
"\t-Grid.NumberOfCellsX The grid resolution in x direction [-]\n"
......
......@@ -81,9 +81,9 @@ void usage(const char *progName, const std::string &errorMsg)
"\t-SpatialParams.CoarseBrooksCoreyEntryPressure The entry pressure for the Brooks-Corey\n"
"\t \t capillary pressure - saturation relationship in the coarse soil [Pa]\n"
"\t-SpatialParams.FineResidualSaturationWetting The residual saturation of the wetting phase in the fine soil [-]"
"\t-SpatialParams.FineResidualSaturationNonWetting The residual saturation of the non-wetting phase in the fine soil [-]\n"
"\t-SpatialParams.FineResidualSaturationNonwetting The residual saturation of the nonwetting phase in the fine soil [-]\n"
"\t-SpatialParams.CoarseResidualSaturationWetting The residual saturation of the wetting phase in the coarse soil [-]"
"\t-SpatialParams.CoarseResidualSaturationNonWetting The residual saturation of the non-wetting phase in the coarse soil [-]\n"
"\t-SpatialParams.CoarseResidualSaturationNonwetting The residual saturation of the nonwetting phase in the coarse soil [-]\n"
"\t-Boundary.LowerPressure The Dirichlet pressure value for the boundary condition at the lower boundary [Pa]\n"
"\t-Boundary.UpperPressure The Dirichlet pressure value for the boundary condition at the upper boundary [Pa]\n"
"\t-Grid.NumberOfCellsX The grid resolution in x direction [-]\n"
......
......@@ -73,9 +73,9 @@ public:
// residual saturations
lensMaterialParams_.setSwr( getParam<Scalar>("SpatialParams.FineResidualSaturationWetting") );
lensMaterialParams_.setSnr( getParam<Scalar>("SpatialParams.FineResidualSaturationNonWetting") );
lensMaterialParams_.setSnr( getParam<Scalar>("SpatialParams.FineResidualSaturationNonwetting") );
outerMaterialParams_.setSwr( getParam<Scalar>("SpatialParams.CoarseResidualSaturationWetting") );
outerMaterialParams_.setSnr( getParam<Scalar>("SpatialParams.CoarseResidualSaturationNonWetting") );
outerMaterialParams_.setSnr( getParam<Scalar>("SpatialParams.CoarseResidualSaturationNonwetting") );
// parameters for the Brooks-Corey law
lensMaterialParams_.setPe( getParam<Scalar>("SpatialParams.FineBrooksCoreyEntryPressure") );
......
......@@ -12,7 +12,7 @@ For the wetting phase (water):
\label{DGLw}
\end{equation}
For the non-wetting phase (gas or NAPL):
For the nonwetting phase (gas or NAPL):
\begin{equation}
\phi \varrho_{n} \frac{\partial ( S_{n})}{\partial t} - \nabla
\cdot \left( \varrho_{n} \underbrace{\frac{k_{rn}}{\mu_n} \mathbf{K} \cdot
......
......@@ -24,9 +24,9 @@ FineBrooksCoreyEntryPressure = 400 # entry pressure for the Brooks-Core
CoarseBrooksCoreyLambda = 2.0 # pore size distribution parameter for the Brooks-Corey capillary pressure - saturation relationship in the coarse soil [-]
CoarseBrooksCoreyEntryPressure = 200 # entry pressure for the Brooks-Corey capillary pressure - saturation relationship in the coarse soil [Pa]
FineResidualSaturationWetting = 0.05 # residual saturation of the wetting phase in the fine soil [-]
FineResidualSaturationNonWetting = 0.3 # residual saturation of the non-wetting phase in the fine soil [-]
FineResidualSaturationNonwetting = 0.3 # residual saturation of the nonwetting phase in the fine soil [-]
CoarseResidualSaturationWetting = 0.05 # residual saturation of the wetting phase in the coarse soil [-]
CoarseResidualSaturationNonWetting = 0.1 # residual saturation of the non-wetting phase in the coarse soil [-]
CoarseResidualSaturationNonwetting = 0.1 # residual saturation of the nonwetting phase in the coarse soil [-]
########
[Boundary]
......
......@@ -81,9 +81,9 @@ void usage(const char *progName, const std::string &errorMsg)
"\t-SpatialParams.CoarseBrooksCoreyEntryPressure The entry pressure for the Brooks-Corey\n"
"\t \t capillary pressure - saturation relationship in the coarse soil [Pa]\n"
"\t-SpatialParams.FineResidualSaturationWetting The residual saturation of the wetting phase in the fine soil [-]"
"\t-SpatialParams.FineResidualSaturationNonWetting The residual saturation of the non-wetting phase in the fine soil [-]\n"
"\t-SpatialParams.FineResidualSaturationNonwetting The residual saturation of the nonwetting phase in the fine soil [-]\n"
"\t-SpatialParams.CoarseResidualSaturationWetting The residual saturation of the wetting phase in the coarse soil [-]"
"\t-SpatialParams.CoarseResidualSaturationNonWetting The residual saturation of the non-wetting phase in the coarse soil [-]\n"
"\t-SpatialParams.CoarseResidualSaturationNonwetting The residual saturation of the nonwetting phase in the coarse soil [-]\n"
"\t-Boundary.LowerPressure The Dirichlet pressure value for the boundary condition at the lower boundary [Pa]\n"
"\t-Boundary.UpperPressure The Dirichlet pressure value for the boundary condition at the upper boundary [Pa]\n"
"\t-Boundary.InfiltrationRate The infiltration rate [kg/(ms)]\n"
......
......@@ -38,7 +38,7 @@ Simulate the given problem.\\
\begin{table}[ht!]
\begin{tabular}[t]{llll}
$\rho_n=$ & non-wetting phase density & $1.46 \cdot 10^{3}$ & [kg/m$^3$] \\
$\rho_n=$ & nonwetting phase density & $1.46 \cdot 10^{3}$ & [kg/m$^3$] \\
$\rho_w=$ & wetting phase density & $1.0 \cdot 10^{3}$ & [kg/m$^3$] \\
$\Phi_1=$ & porosity in area one & $0.4$ & [-] \\
$\Phi_2=$ & porosity in area two & $0.38$ & [-] \\
......
......@@ -66,7 +66,7 @@ For the wetting phase (water):
\label{DGLw}
\end{equation}
For the non-wetting phase (DNAPL):
For the nonwetting phase (DNAPL):
\begin{equation}
\phi \varrho_{n} \frac{\partial ( S_{n})}{\partial t} - \nabla
\cdot \left( \varrho_{n} \underbrace{\frac{k_{rn}}{\mu_n} \mathbf{K} \cdot
......@@ -85,9 +85,9 @@ p_{n} = p_{w} + p_c ,\qquad S_{w} = (1 - S_{n})
\label{transp_equation_paramII}
\begin{tabular}[t]{lll}
$p_w$ & pressure of wetting phase & [Pa] \\
$p_n$ & pressure of non-wetting phase & [Pa] \\
$p_n$ & pressure of nonwetting phase & [Pa] \\
$S_w$ & saturation of wetting phase & [-] \\
$S_n$ & saturation of non-wetting phase & [-] \\
$S_n$ & saturation of nonwetting phase & [-] \\
$S_{wr}$ & residual saturation of wetting phase & [-] \\
$S_{nr}$ & residual saturation of non--wetting phase & [-] \\
$\phi$ & effective porosity & [-] \\
......@@ -98,12 +98,12 @@ $\mu_w$ & dynamic viscosity of wetting phase &[Pa s] \\
$\mu_n$ & dynamic viscosity of non--wetting phase &[Pa s] \\
$\mathbf{K}$ & intrinsic permeability & [m$^2$] \\
$k_{rw}$ & relative permeability for wetting phase & [-] \\
$k_{rn}$ & relative permeability for non-wetting phase & [-] \\
$k_{rn}$ & relative permeability for nonwetting phase & [-] \\
$p_c$ & capillary pressure & [Pa] \\
$p_d$ & entry pressure, BC parameter & [Pa] \\
$\lambda$ & Brooks-Corey parameter & [-] \\
$q_w$ & mass source/sink rate for wetting phase & [kg/(m$^3$s)] \\
$q_w$ & mass source/sink rate for non-wetting phase & [kg/(m$^3$s)] \\
$q_w$ & mass source/sink rate for nonwetting phase & [kg/(m$^3$s)] \\
\end{tabular}
\end{table}
......
......@@ -79,9 +79,9 @@ void usage(const char *progName, const std::string &errorMsg)
"\t-SpatialParams.CoarseBrooksCoreyEntryPressure The entry pressure for the Brooks-Corey\n"
"\t \t capillary pressure - saturation relationship in the coarse soil [Pa]\n"
"\t-SpatialParams.FineResidualSaturationWetting The residual saturation of the wetting phase in the fine soil [-]"
"\t-SpatialParams.FineResidualSaturationNonWetting The residual saturation of the non-wetting phase in the fine soil [-]\n"
"\t-SpatialParams.FineResidualSaturationNonwetting The residual saturation of the nonwetting phase in the fine soil [-]\n"
"\t-SpatialParams.CoarseResidualSaturationWetting The residual saturation of the wetting phase in the coarse soil [-]"
"\t-SpatialParams.CoarseResidualSaturationNonWetting The residual saturation of the non-wetting phase in the coarse soil [-]\n"
"\t-SpatialParams.CoarseResidualSaturationNonwetting The residual saturation of the nonwetting phase in the coarse soil [-]\n"
"\t-Boundary.LowerPressure The Dirichlet pressure value for the boundary condition at the lower boundary [Pa]\n"
"\t-Boundary.UpperPressure The Dirichlet pressure value for the boundary condition at the upper boundary [Pa]\n"
"\t-Boundary.InfiltrationRate The infiltration rate [kg/(ms)]\n"
......
......@@ -19,9 +19,9 @@ FineBrooksCoreyEntryPressure = 500 # entry pressure for the Brooks-Core
CoarseBrooksCoreyLambda = 2.0 # pore size distribution parameter for the Brooks-Corey capillary pressure - saturation relationship in the coarse soil [-]
CoarseBrooksCoreyEntryPressure = 200 # entry pressure for the Brooks-Corey capillary pressure - saturation relationship in the coarse soil [Pa]
FineResidualSaturationWetting = 0.18 # residual saturation of the wetting phase in the fine soil [-]
FineResidualSaturationNonWetting = 0.0 # residual saturation of the non-wetting phase in the fine soil [-]
FineResidualSaturationNonwetting = 0.0 # residual saturation of the nonwetting phase in the fine soil [-]
CoarseResidualSaturationWetting = 0.05 # residual saturation of the wetting phase in the coarse soil [-]
CoarseResidualSaturationNonWetting = 0.0 # residual saturation of the non-wetting phase in the coarse soil [-]
CoarseResidualSaturationNonwetting = 0.0 # residual saturation of the nonwetting phase in the coarse soil [-]
[Boundary]
LowerPressure = 1.19612e5 # Dirichlet pressure value for the boundary condition at the lower boundary [Pa]
......
......@@ -51,11 +51,11 @@ void usage(const char *progName, const std::string &errorMsg)
"\t-SpatialParams.BrooksCoreyEntryPressure The entry pressure for the \n"
"\t \t Brooks-Corey capillary pressure - saturation relationship [Pa]\n"
"\t-SpatialParams.ResidualSaturationWetting The residual saturation of the wetting phase [-]\n"
"\t-SpatialParams.ResidualSaturationNonWetting The residual saturation of the non-wetting phase [-]\n"
"\t-SpatialParams.ResidualSaturationNonwetting The residual saturation of the nonwetting phase [-]\n"
"\t-Fluid.DensityW The density of the wetting phase [kg/m^3]\n"
"\t-Fluid.DensityNW The density of the non-wetting phase [kg/m^3]\n"
"\t-Fluid.DensityNW The density of the nonwetting phase [kg/m^3]\n"
"\t-Fluid.ViscosityW The dynamic viscosity of the wetting phase [kg/(ms)]\n"
"\t-Fluid.ViscosityNW The dynamic viscosity of the non-wetting phase [kg/(ms)]\n"
"\t-Fluid.ViscosityNW The dynamic viscosity of the nonwetting phase [kg/(ms)]\n"
"\t-Grid.NumberOfCellsX The grid resolution in x direction [-]\n"
"\n optional: \n"
"\t-Output.ParaviewOutput Boolean, default is not writing ViPLab but paraview output";
......
......@@ -14,13 +14,13 @@ BrooksCoreyLambda = 4.0 # pore size distribution parameter f
BrooksCoreyEntryPressure = 0 # entry pressure for the Brooks-Corey capillary pressure - saturation relationship [Pa]
ResidualSaturationWetting = 0.2 # residual saturation of the wetting phase [-]
ResidualSaturationNonWetting = 0.2 # residual saturation of the non-wetting phase [-]
ResidualSaturationNonwetting = 0.2 # residual saturation of the nonwetting phase [-]
[Fluid]
DensityW = 1e3 # density of the wetting phase [kg/m^3]
DensityNW = 1e3 # density of the non-wetting phase [kg/m^3]
DensityNW = 1e3 # density of the nonwetting phase [kg/m^3]
ViscosityW = 1e-3 # dynamic viscosity of the wetting phase [kg/(ms)]
ViscosityNW = 1e-3 # dynamic viscosity of the non-wetting phase [kg/(ms)]
ViscosityNW = 1e-3 # dynamic viscosity of the nonwetting phase [kg/(ms)]
[Grid]
UpperRight = 100 75 # extension of the domain (x,y) [m]
......
......@@ -88,10 +88,10 @@ public:
PseudoOil<Scalar>::setDensity( getParam<Scalar>("Fluid.DensityW") );
PseudoH2O<Scalar>::setDensity( getParam<Scalar>("Fluid.DensityNW") );
densityNonWetting_ = getParam<Scalar>("Fluid.DensityNW");
densityNonwetting_ = getParam<Scalar>("Fluid.DensityNW");
swr_ = getParam<Scalar>("SpatialParams.ResidualSaturationWetting");
snr_ = getParam<Scalar>("SpatialParams.ResidualSaturationNonWetting");
snr_ = getParam<Scalar>("SpatialParams.ResidualSaturationNonwetting");
paraviewOutput_ = getParam<bool>("Output.paraviewOutput", true);
}
......@@ -204,9 +204,9 @@ public:
if (globalPos[0] > upperRight_[0] - eps_) //east boundary
{
// the volume flux should remain constant, when density is changed
// here, we multiply by the density of the NonWetting Phase
// here, we multiply by the density of the Nonwetting Phase
const Scalar referenceDensity = 1000.0;
values[nPhaseIdx] = 3e-4 * densityNonWetting_/referenceDensity;
values[nPhaseIdx] = 3e-4 * densityNonwetting_/referenceDensity;
}
}
/*!
......@@ -253,7 +253,7 @@ private:
GlobalPosition upperRight_;
Scalar eps_, swr_, snr_;
Scalar pLeftBc_;
Scalar densityNonWetting_;
Scalar densityNonwetting_;
BuckleyLeverettAnalytic<TypeTag> analyticSolution_;
ViplabOutput<TypeTag> viplabOutput_;
bool paraviewOutput_;
......
......@@ -104,7 +104,7 @@ public:
constPermeability_ = getParam<double>("SpatialParams.Permeability")*permFactor;
materialLawParams_.setSwr( getParam<double>("SpatialParams.ResidualSaturationWetting") );
materialLawParams_.setSnr( getParam<double>("SpatialParams.ResidualSaturationNonWetting") );
materialLawParams_.setSnr( getParam<double>("SpatialParams.ResidualSaturationNonwetting") );
//set Brooks-Corey parameters
materialLawParams_.setPe( getParam<double>("SpatialParams.BrooksCoreyEntryPressure") );
materialLawParams_.setLambda( getParam<double>("SpatialParams.BrooksCoreyLambda") );
......
......@@ -230,14 +230,14 @@ the influence of the grid size!
%capillary pressure - saturation relationship [Pa]
%
%ResidualSaturationWetting = 0.2 # residual saturation of the wetting phase [-]
%ResidualSaturationNonWetting = 0.2 # residual saturation of the non-wetting phase [-]
%ResidualSaturationNonwetting = 0.2 # residual saturation of the nonwetting phase [-]
%
%[Fluid]
%
%densityW = 1e3 # density of the wetting phase [kg/m^3]
%densityNW = 1e3 # density of the non-wetting phase [kg/m^3]
%densityNW = 1e3 # density of the nonwetting phase [kg/m^3]
%viscosityW = 1e-3 # dynamic viscosity of the wetting phase [kg/(ms)]
%viscosityNW = 1e-3 # dynamic viscosity of the non-wetting phase [kg/(ms)]
%viscosityNW = 1e-3 # dynamic viscosity of the nonwetting phase [kg/(ms)]
%
%[Grid]
%numberOfCellsX= 10 # grid resolution in x direction, max 200
......
......@@ -20,7 +20,7 @@ strongly dependent on the linearity.}
\item What is the influence of viscosity on the front? Explain!
{\em The larger the ratio of the water viscosity to the NAPL viscosity
($\frac{\mu_w}{\mu_n}$), the slower travels the front and the higher are the
water saturations. See Figure \ref{Visc}. The ``middle'' curve shows always the case with equal viscosities. The more bulky, slower front belongs in both figures to the case where the wetting-phase (injected) has a higher viscosity than the non-wetting-phase.}
water saturations. See Figure \ref{Visc}. The ``middle'' curve shows always the case with equal viscosities. The more bulky, slower front belongs in both figures to the case where the wetting-phase (injected) has a higher viscosity than the nonwetting-phase.}
\begin{figure}[h]
\begin{minipage}[b]{0.45\linewidth}
\centering
......@@ -32,7 +32,7 @@ water saturations. See Figure \ref{Visc}. The ``middle'' curve shows always the
\centering
\includegraphics[width=0.9\linewidth]{\Pictpath/CompareViscw.pdf}
\end{minipage}
\caption{{\it Influence of viscosity on the problem. Wetting phase is injected. Left: $\mu_w=const=10^{-3}$ Pa s, non-wetting phase viscosity is varied. Right: $\mu_n=const=10^{-3}$ Pa s, wetting phase viscosity is varied. }}
\caption{{\it Influence of viscosity on the problem. Wetting phase is injected. Left: $\mu_w=const=10^{-3}$ Pa s, nonwetting phase viscosity is varied. Right: $\mu_n=const=10^{-3}$ Pa s, wetting phase viscosity is varied. }}
\protect\label{Visc}
\end{figure}
......
......@@ -24,7 +24,7 @@ Porosity = 0.3 # porosity
[MaterialLaw]
Swr = 0.2 # [-] residual wetting phase sat.
Snr = 0.2 # [-] residual non-wetting phase sat.
Snr = 0.2 # [-] residual nonwetting phase sat.
Pe = 5e3 # [Pa] capillary entry pressure
Lambda = 2 # [-] Brooks Corey parameter
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment