diff --git a/lecture/efm/1p2c_2p_2p2c/description/advectiondiffusiondissolution.tex b/lecture/efm/1p2c_2p_2p2c/description/advectiondiffusiondissolution.tex index d96dcdd189a723eda0a8b2420fed437ae56fba63..b98c7f72f70d2a2cefbb393c90f529289c95bbcc 100644 --- a/lecture/efm/1p2c_2p_2p2c/description/advectiondiffusiondissolution.tex +++ b/lecture/efm/1p2c_2p_2p2c/description/advectiondiffusiondissolution.tex @@ -84,7 +84,7 @@ Figure \ref{boundarycond_fig} shows a sketch of the problem. The domain is initi %\begin{table}%[ht!] %\begin{tabular}[t]{llll} -%$\rho_n=$ & non-wetting phase density & $1.46 \cdot 10^{3}$ & [kg/m$^3$] \\ +%$\rho_n=$ & nonwetting phase density & $1.46 \cdot 10^{3}$ & [kg/m$^3$] \\ %$\rho_w=$ & wetting phase density & $1.0 \cdot 10^{3}$ & [kg/m$^3$] \\ %$\Phi_1=$ & porosity in area one & $0.4$ & [-] \\ %$\Phi_2=$ & porosity in area two & $0.38$ & [-] \\ diff --git a/lecture/efm/1p2c_2p_2p2c/description/timescale_solution.tex b/lecture/efm/1p2c_2p_2p2c/description/timescale_solution.tex index 27afb88ba16a772c7f25c510b7c6eaec3610cbdd..c1d7765e7708d8f79ca0a7b701dc5c2af54ebf60 100755 --- a/lecture/efm/1p2c_2p_2p2c/description/timescale_solution.tex +++ b/lecture/efm/1p2c_2p_2p2c/description/timescale_solution.tex @@ -90,7 +90,7 @@ The governing equations are derived in exercise two. \item When does the gas phase reach the lower boundary? \\ - {\em You can see how the gas quickly expands due to capillary diffusion and then stays immobile afterwards. The initial capillary pressure at the interface has to be larger than the entry pressure of the lower permeable layer. The capillary pressure depends on the saturation, i.e., only above a specific non-wetting phase saturation can the gas enter the layer. In this layer the capillary forces lead to a further radial distribution. If there exists a residual saturation the gas will probably not reach the lower boundary.} + {\em You can see how the gas quickly expands due to capillary diffusion and then stays immobile afterwards. The initial capillary pressure at the interface has to be larger than the entry pressure of the lower permeable layer. The capillary pressure depends on the saturation, i.e., only above a specific nonwetting phase saturation can the gas enter the layer. In this layer the capillary forces lead to a further radial distribution. If there exists a residual saturation the gas will probably not reach the lower boundary.} \item How does a change of permeability, porosity, residual saturation or the Brooks-Corey parameters affect the breakthrough time? \\ {\em see above} @@ -169,7 +169,7 @@ Alltogether this leads to 15 unknowns and 13 equations plus the two transport eq as long as $0 < S_\alpha < 1$. \item Only wetting phase is present: The mass fraction of, e.g., N$_2$ in the wetting phase $X^n_l$ is used, as long as the maximum mass fraction is not exceeded ($X^n_l("SpatialParams.FineResidualSaturationWetting") ); - lensMaterialParams_.setSnr( getParam("SpatialParams.FineResidualSaturationNonWetting") ); + lensMaterialParams_.setSnr( getParam("SpatialParams.FineResidualSaturationNonwetting") ); outerMaterialParams_.setSwr( getParam("SpatialParams.CoarseResidualSaturationWetting") ); - outerMaterialParams_.setSnr( getParam("SpatialParams.CoarseResidualSaturationNonWetting") ); + outerMaterialParams_.setSnr( getParam("SpatialParams.CoarseResidualSaturationNonwetting") ); // parameters for the Brooks-Corey law lensMaterialParams_.setPe( getParam("SpatialParams.FineBrooksCoreyEntryPressure") ); diff --git a/lecture/efm/1p2cvs2p/description/twophase.tex b/lecture/efm/1p2cvs2p/description/twophase.tex index bbdd4e123d63c48f523dd1f351bd3875bcd2bd79..efdd1ccb4ff872b7849b60a7dd06883bc29a9f05 100755 --- a/lecture/efm/1p2cvs2p/description/twophase.tex +++ b/lecture/efm/1p2cvs2p/description/twophase.tex @@ -12,7 +12,7 @@ For the wetting phase (water): \label{DGLw} -For the non-wetting phase (gas or NAPL): +For the nonwetting phase (gas or NAPL): $$\phi \varrho_{n} \frac{\partial ( S_{n})}{\partial t} - \nabla \cdot \left( \varrho_{n} \underbrace{\frac{k_{rn}}{\mu_n} \mathbf{K} \cdot diff --git a/lecture/efm/1p2cvs2p/exercise1.input b/lecture/efm/1p2cvs2p/exercise1.input index 5490f3855e2bfdf1443ba44b56ac006414c2d26a..b67974d71a4debc81061e970ece49a4c855a6723 100644 --- a/lecture/efm/1p2cvs2p/exercise1.input +++ b/lecture/efm/1p2cvs2p/exercise1.input @@ -24,9 +24,9 @@ FineBrooksCoreyEntryPressure = 400 # entry pressure for the Brooks-Core CoarseBrooksCoreyLambda = 2.0 # pore size distribution parameter for the Brooks-Corey capillary pressure - saturation relationship in the coarse soil [-] CoarseBrooksCoreyEntryPressure = 200 # entry pressure for the Brooks-Corey capillary pressure - saturation relationship in the coarse soil [Pa] FineResidualSaturationWetting = 0.05 # residual saturation of the wetting phase in the fine soil [-] -FineResidualSaturationNonWetting = 0.3 # residual saturation of the non-wetting phase in the fine soil [-] +FineResidualSaturationNonwetting = 0.3 # residual saturation of the nonwetting phase in the fine soil [-] CoarseResidualSaturationWetting = 0.05 # residual saturation of the wetting phase in the coarse soil [-] -CoarseResidualSaturationNonWetting = 0.1 # residual saturation of the non-wetting phase in the coarse soil [-] +CoarseResidualSaturationNonwetting = 0.1 # residual saturation of the nonwetting phase in the coarse soil [-] ######## [Boundary] diff --git a/lecture/efm/1p2cvs2p/lens2pexercise1.cc b/lecture/efm/1p2cvs2p/lens2pexercise1.cc index f726aaa99ad7662cb2460e1e4fd6c01b6d1094d1..79d723b7a939234eec4683eccd8c03af1e1ff212 100644 --- a/lecture/efm/1p2cvs2p/lens2pexercise1.cc +++ b/lecture/efm/1p2cvs2p/lens2pexercise1.cc @@ -81,9 +81,9 @@ void usage(const char *progName, const std::string &errorMsg) "\t-SpatialParams.CoarseBrooksCoreyEntryPressure The entry pressure for the Brooks-Corey\n" "\t \t capillary pressure - saturation relationship in the coarse soil [Pa]\n" "\t-SpatialParams.FineResidualSaturationWetting The residual saturation of the wetting phase in the fine soil [-]" - "\t-SpatialParams.FineResidualSaturationNonWetting The residual saturation of the non-wetting phase in the fine soil [-]\n" + "\t-SpatialParams.FineResidualSaturationNonwetting The residual saturation of the nonwetting phase in the fine soil [-]\n" "\t-SpatialParams.CoarseResidualSaturationWetting The residual saturation of the wetting phase in the coarse soil [-]" - "\t-SpatialParams.CoarseResidualSaturationNonWetting The residual saturation of the non-wetting phase in the coarse soil [-]\n" + "\t-SpatialParams.CoarseResidualSaturationNonwetting The residual saturation of the nonwetting phase in the coarse soil [-]\n" "\t-Boundary.LowerPressure The Dirichlet pressure value for the boundary condition at the lower boundary [Pa]\n" "\t-Boundary.UpperPressure The Dirichlet pressure value for the boundary condition at the upper boundary [Pa]\n" "\t-Boundary.InfiltrationRate The infiltration rate [kg/(ms)]\n" diff --git a/lecture/efm/2p/description/entrypressure.tex b/lecture/efm/2p/description/entrypressure.tex index c8af392b3394961a2305f06ed2120bb8b6d48920..04e0d468ae7aff938e06e802249d51f83f48db78 100644 --- a/lecture/efm/2p/description/entrypressure.tex +++ b/lecture/efm/2p/description/entrypressure.tex @@ -38,7 +38,7 @@ Simulate the given problem.\\ \begin{table}[ht!] \begin{tabular}[t]{llll} -\rho_n= & non-wetting phase density & 1.46 \cdot 10^{3} & [kg/m^3] \\ +\rho_n= & nonwetting phase density & 1.46 \cdot 10^{3} & [kg/m^3] \\ \rho_w= & wetting phase density & 1.0 \cdot 10^{3} & [kg/m^3] \\ \Phi_1= & porosity in area one & 0.4 & [-] \\ \Phi_2= & porosity in area two & 0.38 & [-] \\ diff --git a/lecture/efm/2p/description/entrypressure_solution.tex b/lecture/efm/2p/description/entrypressure_solution.tex index e519e398c8481c1e679175701a185bf7302ece39..12e5c051b76e5dbf012c59ff02d59325d7ac75c5 100755 --- a/lecture/efm/2p/description/entrypressure_solution.tex +++ b/lecture/efm/2p/description/entrypressure_solution.tex @@ -66,7 +66,7 @@ For the wetting phase (water): \label{DGLw}$$ -For the non-wetting phase (DNAPL): +For the nonwetting phase (DNAPL): \phi \varrho_{n} \frac{\partial ( S_{n})}{\partial t} - \nabla \cdot \left( \varrho_{n} \underbrace{\frac{k_{rn}}{\mu_n} \mathbf{K} \cdot @@ -85,9 +85,9 @@ p_{n} = p_{w} + p_c ,\qquad S_{w} = (1 - S_{n}) \label{transp_equation_paramII} \begin{tabular}[t]{lll}$p_w$& pressure of wetting phase & [Pa] \\ -$p_n$& pressure of non-wetting phase & [Pa] \\ +$p_n$& pressure of nonwetting phase & [Pa] \\$S_w$& saturation of wetting phase & [-] \\ -$S_n$& saturation of non-wetting phase & [-] \\ +$S_n$& saturation of nonwetting phase & [-] \\$S_{wr}$& residual saturation of wetting phase & [-] \\$S_{nr}$& residual saturation of non--wetting phase & [-] \\$\phi$& effective porosity & [-] \\ @@ -98,12 +98,12 @@$\mu_w$& dynamic viscosity of wetting phase &[Pa s] \\$\mu_n$& dynamic viscosity of non--wetting phase &[Pa s] \\$\mathbf{K}$& intrinsic permeability & [m$^2$] \\$k_{rw}$& relative permeability for wetting phase & [-] \\ -$k_{rn}$& relative permeability for non-wetting phase & [-] \\ +$k_{rn}$& relative permeability for nonwetting phase & [-] \\$p_c$& capillary pressure & [Pa] \\$p_d$& entry pressure, BC parameter & [Pa] \\$\lambda$& Brooks-Corey parameter & [-] \\$q_w$& mass source/sink rate for wetting phase & [kg/(m$^3$s)] \\ -$q_w$& mass source/sink rate for non-wetting phase & [kg/(m$^3$s)] \\ +$q_w$& mass source/sink rate for nonwetting phase & [kg/(m$^3$s)] \\ \end{tabular} \end{table} diff --git a/lecture/efm/2p/lens2pexercise2.cc b/lecture/efm/2p/lens2pexercise2.cc index 86fc32d15d38cb4f1527575913b1773254f28ccf..70afb5cd17988ac973edff1b3c54bcb0f6ca466b 100644 --- a/lecture/efm/2p/lens2pexercise2.cc +++ b/lecture/efm/2p/lens2pexercise2.cc @@ -79,9 +79,9 @@ void usage(const char *progName, const std::string &errorMsg) "\t-SpatialParams.CoarseBrooksCoreyEntryPressure The entry pressure for the Brooks-Corey\n" "\t \t capillary pressure - saturation relationship in the coarse soil [Pa]\n" "\t-SpatialParams.FineResidualSaturationWetting The residual saturation of the wetting phase in the fine soil [-]" - "\t-SpatialParams.FineResidualSaturationNonWetting The residual saturation of the non-wetting phase in the fine soil [-]\n" + "\t-SpatialParams.FineResidualSaturationNonwetting The residual saturation of the nonwetting phase in the fine soil [-]\n" "\t-SpatialParams.CoarseResidualSaturationWetting The residual saturation of the wetting phase in the coarse soil [-]" - "\t-SpatialParams.CoarseResidualSaturationNonWetting The residual saturation of the non-wetting phase in the coarse soil [-]\n" + "\t-SpatialParams.CoarseResidualSaturationNonwetting The residual saturation of the nonwetting phase in the coarse soil [-]\n" "\t-Boundary.LowerPressure The Dirichlet pressure value for the boundary condition at the lower boundary [Pa]\n" "\t-Boundary.UpperPressure The Dirichlet pressure value for the boundary condition at the upper boundary [Pa]\n" "\t-Boundary.InfiltrationRate The infiltration rate [kg/(ms)]\n" diff --git a/lecture/efm/2p/lens2pexercise2.input b/lecture/efm/2p/lens2pexercise2.input index ad0fe3cde622c82bdf050a74969fc158d2ec5cdd..2c66ce140da2ce88b48aeb42cc653ab1534d74ff 100644 --- a/lecture/efm/2p/lens2pexercise2.input +++ b/lecture/efm/2p/lens2pexercise2.input @@ -19,9 +19,9 @@ FineBrooksCoreyEntryPressure = 500 # entry pressure for the Brooks-Core CoarseBrooksCoreyLambda = 2.0 # pore size distribution parameter for the Brooks-Corey capillary pressure - saturation relationship in the coarse soil [-] CoarseBrooksCoreyEntryPressure = 200 # entry pressure for the Brooks-Corey capillary pressure - saturation relationship in the coarse soil [Pa] FineResidualSaturationWetting = 0.18 # residual saturation of the wetting phase in the fine soil [-] -FineResidualSaturationNonWetting = 0.0 # residual saturation of the non-wetting phase in the fine soil [-] +FineResidualSaturationNonwetting = 0.0 # residual saturation of the nonwetting phase in the fine soil [-] CoarseResidualSaturationWetting = 0.05 # residual saturation of the wetting phase in the coarse soil [-] -CoarseResidualSaturationNonWetting = 0.0 # residual saturation of the non-wetting phase in the coarse soil [-] +CoarseResidualSaturationNonwetting = 0.0 # residual saturation of the nonwetting phase in the coarse soil [-] [Boundary] LowerPressure = 1.19612e5 # Dirichlet pressure value for the boundary condition at the lower boundary [Pa] diff --git a/lecture/mm/buckleyleverett/buckleyleverettexercise.cc b/lecture/mm/buckleyleverett/buckleyleverettexercise.cc index cda795fc18d539537eea06d2e845460a7170147b..6673a309038c406b66140e3b1d08f9ba4e6fbb10 100644 --- a/lecture/mm/buckleyleverett/buckleyleverettexercise.cc +++ b/lecture/mm/buckleyleverett/buckleyleverettexercise.cc @@ -51,11 +51,11 @@ void usage(const char *progName, const std::string &errorMsg) "\t-SpatialParams.BrooksCoreyEntryPressure The entry pressure for the \n" "\t \t Brooks-Corey capillary pressure - saturation relationship [Pa]\n" "\t-SpatialParams.ResidualSaturationWetting The residual saturation of the wetting phase [-]\n" - "\t-SpatialParams.ResidualSaturationNonWetting The residual saturation of the non-wetting phase [-]\n" + "\t-SpatialParams.ResidualSaturationNonwetting The residual saturation of the nonwetting phase [-]\n" "\t-Fluid.DensityW The density of the wetting phase [kg/m^3]\n" - "\t-Fluid.DensityNW The density of the non-wetting phase [kg/m^3]\n" + "\t-Fluid.DensityNW The density of the nonwetting phase [kg/m^3]\n" "\t-Fluid.ViscosityW The dynamic viscosity of the wetting phase [kg/(ms)]\n" - "\t-Fluid.ViscosityNW The dynamic viscosity of the non-wetting phase [kg/(ms)]\n" + "\t-Fluid.ViscosityNW The dynamic viscosity of the nonwetting phase [kg/(ms)]\n" "\t-Grid.NumberOfCellsX The grid resolution in x direction [-]\n" "\n optional: \n" "\t-Output.ParaviewOutput Boolean, default is not writing ViPLab but paraview output"; diff --git a/lecture/mm/buckleyleverett/buckleyleverettexercise.input b/lecture/mm/buckleyleverett/buckleyleverettexercise.input index 4c6af3cfcf4161c9cc170e86baca6553e4dc3911..b5c3e9f357ace444c114641fb95f7fa753db0dec 100644 --- a/lecture/mm/buckleyleverett/buckleyleverettexercise.input +++ b/lecture/mm/buckleyleverett/buckleyleverettexercise.input @@ -14,13 +14,13 @@ BrooksCoreyLambda = 4.0 # pore size distribution parameter f BrooksCoreyEntryPressure = 0 # entry pressure for the Brooks-Corey capillary pressure - saturation relationship [Pa] ResidualSaturationWetting = 0.2 # residual saturation of the wetting phase [-] -ResidualSaturationNonWetting = 0.2 # residual saturation of the non-wetting phase [-] +ResidualSaturationNonwetting = 0.2 # residual saturation of the nonwetting phase [-] [Fluid] DensityW = 1e3 # density of the wetting phase [kg/m^3] -DensityNW = 1e3 # density of the non-wetting phase [kg/m^3] +DensityNW = 1e3 # density of the nonwetting phase [kg/m^3] ViscosityW = 1e-3 # dynamic viscosity of the wetting phase [kg/(ms)] -ViscosityNW = 1e-3 # dynamic viscosity of the non-wetting phase [kg/(ms)] +ViscosityNW = 1e-3 # dynamic viscosity of the nonwetting phase [kg/(ms)] [Grid] UpperRight = 100 75 # extension of the domain (x,y) [m] diff --git a/lecture/mm/buckleyleverett/buckleyleverettproblem.hh b/lecture/mm/buckleyleverett/buckleyleverettproblem.hh index 65d47245cf91af8fac0724f94d5877d8a9eab2f7..f779efbfac3ab00fe19141446dc97cc9fec6261a 100644 --- a/lecture/mm/buckleyleverett/buckleyleverettproblem.hh +++ b/lecture/mm/buckleyleverett/buckleyleverettproblem.hh @@ -88,10 +88,10 @@ public: PseudoOil::setDensity( getParam("Fluid.DensityW") ); PseudoH2O::setDensity( getParam("Fluid.DensityNW") ); - densityNonWetting_ = getParam("Fluid.DensityNW"); + densityNonwetting_ = getParam("Fluid.DensityNW"); swr_ = getParam("SpatialParams.ResidualSaturationWetting"); - snr_ = getParam("SpatialParams.ResidualSaturationNonWetting"); + snr_ = getParam("SpatialParams.ResidualSaturationNonwetting"); paraviewOutput_ = getParam("Output.paraviewOutput", true); } @@ -204,9 +204,9 @@ public: if (globalPos[0] > upperRight_[0] - eps_) //east boundary { // the volume flux should remain constant, when density is changed - // here, we multiply by the density of the NonWetting Phase + // here, we multiply by the density of the Nonwetting Phase const Scalar referenceDensity = 1000.0; - values[nPhaseIdx] = 3e-4 * densityNonWetting_/referenceDensity; + values[nPhaseIdx] = 3e-4 * densityNonwetting_/referenceDensity; } } /*! @@ -253,7 +253,7 @@ private: GlobalPosition upperRight_; Scalar eps_, swr_, snr_; Scalar pLeftBc_; - Scalar densityNonWetting_; + Scalar densityNonwetting_; BuckleyLeverettAnalytic analyticSolution_; ViplabOutput viplabOutput_; bool paraviewOutput_; diff --git a/lecture/mm/buckleyleverett/buckleyleverettspatialparams.hh b/lecture/mm/buckleyleverett/buckleyleverettspatialparams.hh index ee7d02271a51383637cf2a9f7cb2d8fa07b76b03..d623569af413d7eeb10952ab3876ebd260762b90 100644 --- a/lecture/mm/buckleyleverett/buckleyleverettspatialparams.hh +++ b/lecture/mm/buckleyleverett/buckleyleverettspatialparams.hh @@ -104,7 +104,7 @@ public: constPermeability_ = getParam("SpatialParams.Permeability")*permFactor; materialLawParams_.setSwr( getParam("SpatialParams.ResidualSaturationWetting") ); - materialLawParams_.setSnr( getParam("SpatialParams.ResidualSaturationNonWetting") ); + materialLawParams_.setSnr( getParam("SpatialParams.ResidualSaturationNonwetting") ); //set Brooks-Corey parameters materialLawParams_.setPe( getParam("SpatialParams.BrooksCoreyEntryPressure") ); materialLawParams_.setLambda( getParam("SpatialParams.BrooksCoreyLambda") ); diff --git a/lecture/mm/buckleyleverett/description/buckleyleverett.tex b/lecture/mm/buckleyleverett/description/buckleyleverett.tex index 3e6e7dd307fc8b6848ee4df7f0f254f84265eaaa..5664076085e81c51c9be68046ef2f129ac86f483 100755 --- a/lecture/mm/buckleyleverett/description/buckleyleverett.tex +++ b/lecture/mm/buckleyleverett/description/buckleyleverett.tex @@ -230,14 +230,14 @@ the influence of the grid size! %capillary pressure - saturation relationship [Pa] % %ResidualSaturationWetting = 0.2 # residual saturation of the wetting phase [-] -%ResidualSaturationNonWetting = 0.2 # residual saturation of the non-wetting phase [-] +%ResidualSaturationNonwetting = 0.2 # residual saturation of the nonwetting phase [-] % %[Fluid] % %densityW = 1e3 # density of the wetting phase [kg/m^3] -%densityNW = 1e3 # density of the non-wetting phase [kg/m^3] +%densityNW = 1e3 # density of the nonwetting phase [kg/m^3] %viscosityW = 1e-3 # dynamic viscosity of the wetting phase [kg/(ms)] -%viscosityNW = 1e-3 # dynamic viscosity of the non-wetting phase [kg/(ms)] +%viscosityNW = 1e-3 # dynamic viscosity of the nonwetting phase [kg/(ms)] % %[Grid] %numberOfCellsX= 10 # grid resolution in x direction, max 200 diff --git a/lecture/mm/buckleyleverett/description/buckleyleverett_solution.tex b/lecture/mm/buckleyleverett/description/buckleyleverett_solution.tex index bc1e85ee5b73611916a81c8cf5a4da715616bf4b..016b61d08fd206a86eb1dbee2d20bdf3d915cc5f 100755 --- a/lecture/mm/buckleyleverett/description/buckleyleverett_solution.tex +++ b/lecture/mm/buckleyleverett/description/buckleyleverett_solution.tex @@ -20,7 +20,7 @@ strongly dependent on the linearity.} \item What is the influence of viscosity on the front? Explain! {\em The larger the ratio of the water viscosity to the NAPL viscosity ($\frac{\mu_w}{\mu_n}$), the slower travels the front and the higher are the -water saturations. See Figure \ref{Visc}. The middle'' curve shows always the case with equal viscosities. The more bulky, slower front belongs in both figures to the case where the wetting-phase (injected) has a higher viscosity than the non-wetting-phase.} +water saturations. See Figure \ref{Visc}. The middle'' curve shows always the case with equal viscosities. The more bulky, slower front belongs in both figures to the case where the wetting-phase (injected) has a higher viscosity than the nonwetting-phase.} \begin{figure}[h] \begin{minipage}[b]{0.45\linewidth} \centering @@ -32,7 +32,7 @@ water saturations. See Figure \ref{Visc}. The middle'' curve shows always the \centering \includegraphics[width=0.9\linewidth]{\Pictpath/CompareViscw.pdf} \end{minipage} -\caption{{\it Influence of viscosity on the problem. Wetting phase is injected. Left:$\mu_w=const=10^{-3}$Pa s, non-wetting phase viscosity is varied. Right:$\mu_n=const=10^{-3}$Pa s, wetting phase viscosity is varied. }} +\caption{{\it Influence of viscosity on the problem. Wetting phase is injected. Left:$\mu_w=const=10^{-3}$Pa s, nonwetting phase viscosity is varied. Right:$\mu_n=const=10^{-3}\$ Pa s, wetting phase viscosity is varied. }} \protect\label{Visc} \end{figure} diff --git a/lecture/mm/co2plume/co2plumeshapeexercise.input b/lecture/mm/co2plume/co2plumeshapeexercise.input index 3ed4848fac2785236bcda45b0eaa6b2d86f0d28d..8eb6029fb812862c2e3cd83af7c55271bc559c4a 100644 --- a/lecture/mm/co2plume/co2plumeshapeexercise.input +++ b/lecture/mm/co2plume/co2plumeshapeexercise.input @@ -24,7 +24,7 @@ Porosity = 0.3 # porosity [MaterialLaw] Swr = 0.2 # [-] residual wetting phase sat. -Snr = 0.2 # [-] residual non-wetting phase sat. +Snr = 0.2 # [-] residual nonwetting phase sat. Pe = 5e3 # [Pa] capillary entry pressure Lambda = 2 # [-] Brooks Corey parameter diff --git a/lecture/mm/fuelcell/material/acosta.hh b/lecture/mm/fuelcell/material/acosta.hh index d142861abc6798e7961a01a289d0cd9b06d47739..e5e5650e1e7edf37f8a65614e0cd5f7425caa05b 100644 --- a/lecture/mm/fuelcell/material/acosta.hh +++ b/lecture/mm/fuelcell/material/acosta.hh @@ -186,7 +186,7 @@ public: }; /*! - * \brief The relative permeability for the non-wetting phase + * \brief The relative permeability for the nonwetting phase * of the medium implied by van Genuchten's * parameterization. * @@ -220,7 +220,7 @@ public: /*! * \brief The derivative of the relative permeability for the - * non-wetting phase in regard to the wetting saturation of + * nonwetting phase in regard to the wetting saturation of * the medium as implied by the van Genuchten * parameterization. * diff --git a/lecture/mm/fuelcell/material/regularizedacosta.hh b/lecture/mm/fuelcell/material/regularizedacosta.hh index a73ddf8f634238d9e6c0f856801ed30dd386654a..b83f20ad987f8c2b7feb0a83e1c69f36dfcd22ab 100644 --- a/lecture/mm/fuelcell/material/regularizedacosta.hh +++ b/lecture/mm/fuelcell/material/regularizedacosta.hh @@ -242,7 +242,7 @@ public: /*! * \brief Regularized version of the relative permeability - * for the non-wetting phase of + * for the nonwetting phase of * the medium implied by the Acosta * parameterization. * @@ -266,7 +266,7 @@ public: /*! * \brief The derivative of the relative permeability for the - * non-wetting phase in regard to the wetting saturation of + * nonwetting phase in regard to the wetting saturation of * the medium as implied by the Acosta * parameterization. * diff --git a/lecture/mm/heavyoil/3p/parkervangenuchtenzero.hh b/lecture/mm/heavyoil/3p/parkervangenuchtenzero.hh index a54d37559ad68e7029cd279ac084cfab41339158..c10d3fa928e0897a3b411de403323b2e81b023fa 100644 --- a/lecture/mm/heavyoil/3p/parkervangenuchtenzero.hh +++ b/lecture/mm/heavyoil/3p/parkervangenuchtenzero.hh @@ -182,7 +182,7 @@ public: }; /*! - * \brief The relative permeability for the non-wetting phase + * \brief The relative permeability for the nonwetting phase * after the Model of Parker et al. (1987). * * See model 7 in "Comparison of the Three-Phase Oil Relative Permeability Models" @@ -230,7 +230,7 @@ public: }; /*! - * \brief The relative permeability for the non-wetting phase + * \brief The relative permeability for the nonwetting phase * of the medium implied by van Genuchten's * parameterization. * diff --git a/lecture/mm/heavyoil/3p/parkervangenuchtenzerohysteresis.hh b/lecture/mm/heavyoil/3p/parkervangenuchtenzerohysteresis.hh index 3084ee4a75a478cd0a78ad9bed0f7554886873c5..d8d35c7977a2dac1881f58ffaf3d69c8d7fb9412 100644 --- a/lecture/mm/heavyoil/3p/parkervangenuchtenzerohysteresis.hh +++ b/lecture/mm/heavyoil/3p/parkervangenuchtenzerohysteresis.hh @@ -181,7 +181,7 @@ public: }; /*! - * \brief The relative permeability for the non-wetting phase + * \brief The relative permeability for the nonwetting phase * after the Model of Parker et al. (1987). * * See model 7 in "Comparison of the Three-Phase Oil Relative Permeability Models" @@ -229,7 +229,7 @@ public: }; /*! - * \brief The relative permeability for the non-wetting phase + * \brief The relative permeability for the nonwetting phase * of the medium implied by van Genuchten's * parameterization. * diff --git a/lecture/mm/heavyoil/3p/parkervangenuchtenzerohysteresisparams.hh b/lecture/mm/heavyoil/3p/parkervangenuchtenzerohysteresisparams.hh index 744ae92f6a34bcaf5c67e351eb121a48ba99a604..9ca5bf794a60d92235658f5d3e210aedb05015e4 100644 --- a/lecture/mm/heavyoil/3p/parkervangenuchtenzerohysteresisparams.hh +++ b/lecture/mm/heavyoil/3p/parkervangenuchtenzerohysteresisparams.hh @@ -218,7 +218,7 @@ public: } /*! - * \brief Return the residual non-wetting saturation. + * \brief Return the residual nonwetting saturation. */ Scalar snr() const { @@ -232,7 +232,7 @@ public: } /*! - * \brief Set the residual non-wetting saturation. + * \brief Set the residual nonwetting saturation. */ void setSnr(Scalar input) { diff --git a/lecture/mm/heavyoil/3p/parkervangenuchtenzeroparams.hh b/lecture/mm/heavyoil/3p/parkervangenuchtenzeroparams.hh index 701006eeb6da2169b0c190c5b4dbb19ee3b7f4c0..17c4a35d938e8a4e4329378f43252066c3f3a509 100644 --- a/lecture/mm/heavyoil/3p/parkervangenuchtenzeroparams.hh +++ b/lecture/mm/heavyoil/3p/parkervangenuchtenzeroparams.hh @@ -214,7 +214,7 @@ public: } /*! - * \brief Return the residual non-wetting saturation. + * \brief Return the residual nonwetting saturation. */ Scalar snr() const { @@ -228,7 +228,7 @@ public: } /*! - * \brief Set the residual non-wetting saturation. + * \brief Set the residual nonwetting saturation. */ void setSnr(Scalar input) { diff --git a/lecture/mm/heavyoil/3p/relativepermeabilityhysteresisparams.hh b/lecture/mm/heavyoil/3p/relativepermeabilityhysteresisparams.hh index feac5695ea5e669afc3711d91d6ca6983d459ba9..4fe20cc1773b60e1fbf67e88898bb16628b1681b 100644 --- a/lecture/mm/heavyoil/3p/relativepermeabilityhysteresisparams.hh +++ b/lecture/mm/heavyoil/3p/relativepermeabilityhysteresisparams.hh @@ -590,7 +590,7 @@ public: } /*! - * \brief Return the residual non-wetting saturation. + * \brief Return the residual nonwetting saturation. */ Scalar snr() const { @@ -604,7 +604,7 @@ public: } /*! - * \brief Set the residual non-wetting saturation. + * \brief Set the residual nonwetting saturation. */ void setSnr(Scalar input) { diff --git a/lecture/mm/mcwhorter/description/mcwhorter.tex b/lecture/mm/mcwhorter/description/mcwhorter.tex index ab4c1911b02f52010535c49922862a0f32fef8a9..1cf694482e82d502e11b5bbd53f9037df3990e93 100644 --- a/lecture/mm/mcwhorter/description/mcwhorter.tex +++ b/lecture/mm/mcwhorter/description/mcwhorter.tex @@ -165,14 +165,14 @@ on the shape of the front and the mathematical type of the problem %capillary pressure - saturation relationship [Pa] % %ResidualSaturationWetting = 0. # residual saturation of the wetting phase [-] -%ResidualSaturationNonWetting = 0. # residual saturation of the non-wetting phase [-] +%ResidualSaturationNonwetting = 0. # residual saturation of the nonwetting phase [-] % %[Fluid] % %densityW = 1e3 # density of the wetting phase [kg/m^3] -%densityNW = 1e3 # density of the non-wetting phase [kg/m^3] +%densityNW = 1e3 # density of the nonwetting phase [kg/m^3] %viscosityW = 1e-3 # dynamic viscosity of the wetting phase [kg/(ms)] -%viscosityNW = 1e-3 # dynamic viscosity of the non-wetting phase [kg/(ms)] +%viscosityNW = 1e-3 # dynamic viscosity of the nonwetting phase [kg/(ms)] % %[Grid] %numberOfCellsX= 10 # grid resolution in x direction, max 200 diff --git a/lecture/mm/mcwhorter/mcwhorterexercise.cc b/lecture/mm/mcwhorter/mcwhorterexercise.cc index c1c0caf95a594f06de5b738acb047fd40c3f8aaf..9406595d4224417f0d635a857e6cf89cce13774f 100644 --- a/lecture/mm/mcwhorter/mcwhorterexercise.cc +++ b/lecture/mm/mcwhorter/mcwhorterexercise.cc @@ -51,11 +51,11 @@ void usage(const char *progName, const std::string &errorMsg) "\t-SpatialParams.BrooksCoreyEntryPressure The entry pressure for the \n" "\t \t Brooks-Corey capillary pressure - saturation relationship [Pa]\n" "\t-SpatialParams.ResidualSaturationWetting The residual saturation of the wetting phase [-]\n" - "\t-SpatialParams.ResidualSaturationNonWetting The residual saturation of the non-wetting phase [-]\n" + "\t-SpatialParams.ResidualSaturationNonwetting The residual saturation of the nonwetting phase [-]\n" "\t-Fluid.DensityW The density of the wetting phase [kg/m^3]\n" - "\t-Fluid.DensityNW The density of the non-wetting phase [kg/m^3]\n" + "\t-Fluid.DensityNW The density of the nonwetting phase [kg/m^3]\n" "\t-Fluid.ViscosityW The dynamic viscosity of the wetting phase [kg/(ms)]\n" - "\t-Fluid.ViscosityNW The dynamic viscosity of the non-wetting phase [kg/(ms)]\n" + "\t-Fluid.ViscosityNW The dynamic viscosity of the nonwetting phase [kg/(ms)]\n" "\t-Grid.NumberOfCellsX The grid resolution in x direction [-]\n" "\n optional: \n" "\t-Output.ParaviewOutput Boolean, default is not writing ViPLab but paraview output"; diff --git a/lecture/mm/mcwhorter/mcwhorterexercise.input b/lecture/mm/mcwhorter/mcwhorterexercise.input index 3793d0c6787b4d83a7e4c35702fb851ba04b2f86..80e6ba5cc1c23367e9a90807e7d32eab4e7da158 100644 --- a/lecture/mm/mcwhorter/mcwhorterexercise.input +++ b/lecture/mm/mcwhorter/mcwhorterexercise.input @@ -11,13 +11,13 @@ Porosity = 0.2 # porosity of the porous medium [-] BrooksCoreyLambda = 3.0 # pore size distribution parameter for the Brooks-Corey capillary pressure - saturation relationship [-] BrooksCoreyEntryPressure = 8000 # entry pressure for the Brooks-Corey capillary pressure - saturation relationship [Pa] ResidualSaturationWetting = 0.2 # residual saturation of the wetting phase [-] -ResidualSaturationNonWetting = 0.2 # residual saturation of the non-wetting phase [-] +ResidualSaturationNonwetting = 0.2 # residual saturation of the nonwetting phase [-] [Fluid] DensityW = 1e3 # density of the wetting phase [kg/m^3] -DensityNW = 1e3 # density of the non-wetting phase [kg/m^3] +DensityNW = 1e3 # density of the nonwetting phase [kg/m^3] ViscosityW = 1e-3 # dynamic viscosity of the wetting phase [kg/(ms)] -ViscosityNW = 1e-3 # dynamic viscosity of the non-wetting phase [kg/(ms)] +ViscosityNW = 1e-3 # dynamic viscosity of the nonwetting phase [kg/(ms)] [Grid] UpperRight = 2 1 # extension of the domain (x, y) [m] diff --git a/lecture/mm/mcwhorter/mcwhorterproblem.hh b/lecture/mm/mcwhorter/mcwhorterproblem.hh index 9e3032af74c7a67d862e85ef89acf7ebc30838b5..f6aef530fe02ad79cde0acbd1c52a8b71dc17b31 100644 --- a/lecture/mm/mcwhorter/mcwhorterproblem.hh +++ b/lecture/mm/mcwhorter/mcwhorterproblem.hh @@ -80,7 +80,7 @@ public: PseudoH2O::setDensity( getParam("Fluid.DensityNW") ); swr_ = getParam("SpatialParams.ResidualSaturationWetting"); - snr_ = getParam("SpatialParams.ResidualSaturationNonWetting"); + snr_ = getParam("SpatialParams.ResidualSaturationNonwetting"); paraviewOutput_ = getParam("Output.paraviewOutput", true); }