From d029dfe6bd4dba4dc3206f0af6e70057c9d3e7ee Mon Sep 17 00:00:00 2001 From: Mathis Kelm Date: Wed, 28 Oct 2020 12:07:52 +0100 Subject: [PATCH 1/2] [cleanup] Consistent spelling as nonwetting/Nonwetting --- .../description/advectiondiffusiondissolution.tex | 2 +- .../1p2c_2p_2p2c/description/timescale_solution.tex | 4 ++-- lecture/efm/1p2c_2p_2p2c/exercise3.input | 4 ++-- lecture/efm/1p2c_2p_2p2c/lens2p2cexercise3.cc | 4 ++-- lecture/efm/1p2c_2p_2p2c/lens2pexercise3.cc | 4 ++-- lecture/efm/1p2c_2p_2p2c/lens2pspatialparams.hh | 4 ++-- lecture/efm/1p2cvs2p/description/twophase.tex | 2 +- lecture/efm/1p2cvs2p/exercise1.input | 4 ++-- lecture/efm/1p2cvs2p/lens2pexercise1.cc | 4 ++-- lecture/efm/2p/description/entrypressure.tex | 2 +- lecture/efm/2p/description/entrypressure_solution.tex | 10 +++++----- lecture/efm/2p/lens2pexercise2.cc | 4 ++-- lecture/efm/2p/lens2pexercise2.input | 4 ++-- lecture/mm/buckleyleverett/buckleyleverettexercise.cc | 6 +++--- .../mm/buckleyleverett/buckleyleverettexercise.input | 6 +++--- lecture/mm/buckleyleverett/buckleyleverettproblem.hh | 10 +++++----- .../mm/buckleyleverett/buckleyleverettspatialparams.hh | 2 +- .../mm/buckleyleverett/description/buckleyleverett.tex | 6 +++--- .../description/buckleyleverett_solution.tex | 4 ++-- lecture/mm/co2plume/co2plumeshapeexercise.input | 2 +- lecture/mm/fuelcell/material/acosta.hh | 4 ++-- lecture/mm/fuelcell/material/regularizedacosta.hh | 4 ++-- lecture/mm/heavyoil/3p/parkervangenuchtenzero.hh | 4 ++-- .../mm/heavyoil/3p/parkervangenuchtenzerohysteresis.hh | 4 ++-- .../3p/parkervangenuchtenzerohysteresisparams.hh | 4 ++-- lecture/mm/heavyoil/3p/parkervangenuchtenzeroparams.hh | 4 ++-- .../3p/relativepermeabilityhysteresisparams.hh | 4 ++-- lecture/mm/mcwhorter/description/mcwhorter.tex | 6 +++--- lecture/mm/mcwhorter/mcwhorterexercise.cc | 6 +++--- lecture/mm/mcwhorter/mcwhorterexercise.input | 6 +++--- lecture/mm/mcwhorter/mcwhorterproblem.hh | 2 +- 31 files changed, 68 insertions(+), 68 deletions(-) diff --git a/lecture/efm/1p2c_2p_2p2c/description/advectiondiffusiondissolution.tex b/lecture/efm/1p2c_2p_2p2c/description/advectiondiffusiondissolution.tex index d96dcdd..b98c7f7 100644 --- a/lecture/efm/1p2c_2p_2p2c/description/advectiondiffusiondissolution.tex +++ b/lecture/efm/1p2c_2p_2p2c/description/advectiondiffusiondissolution.tex @@ -84,7 +84,7 @@ Figure \ref{boundarycond_fig} shows a sketch of the problem. The domain is initi %\begin{table}%[ht!] %\begin{tabular}[t]{llll} -%$\rho_n=$ & non-wetting phase density & $1.46 \cdot 10^{3}$ & [kg/m$^3$] \\ +%$\rho_n=$ & nonwetting phase density & $1.46 \cdot 10^{3}$ & [kg/m$^3$] \\ %$\rho_w=$ & wetting phase density & $1.0 \cdot 10^{3}$ & [kg/m$^3$] \\ %$\Phi_1=$ & porosity in area one & $0.4$ & [-] \\ %$\Phi_2=$ & porosity in area two & $0.38$ & [-] \\ diff --git a/lecture/efm/1p2c_2p_2p2c/description/timescale_solution.tex b/lecture/efm/1p2c_2p_2p2c/description/timescale_solution.tex index 27afb88..0ec8c40 100755 --- a/lecture/efm/1p2c_2p_2p2c/description/timescale_solution.tex +++ b/lecture/efm/1p2c_2p_2p2c/description/timescale_solution.tex @@ -90,7 +90,7 @@ The governing equations are derived in exercise two. \item When does the gas phase reach the lower boundary? \\ - {\em You can see how the gas quickly expands due to capillary diffusion and then stays immobile afterwards. The initial capillary pressure at the interface has to be larger than the entry pressure of the lower permeable layer. The capillary pressure depends on the saturation, i.e., only above a specific non-wetting phase saturation can the gas enter the layer. In this layer the capillary forces lead to a further radial distribution. If there exists a residual saturation the gas will probably not reach the lower boundary.} + {\em You can see how the gas quickly expands due to capillary diffusion and then stays immobile afterwards. The initial capillary pressure at the interface has to be larger than the entry pressure of the lower permeable layer. The capillary pressure depends on the saturation, i.e., only above a specific nonwetting phase saturation can the gas enter the layer. In this layer the capillary forces lead to a further radial distribution. If there exists a residual saturation the gas will probably not reach the lower boundary.} \item How does a change of permeability, porosity, residual saturation or the Brooks-Corey parameters affect the breakthrough time? \\ {\em see above} @@ -169,7 +169,7 @@ Alltogether this leads to 15 unknowns and 13 equations plus the two transport eq as long as $ 0 < S_\alpha < 1$. \item Only wetting phase is present: The mass fraction of, e.g., N$_2$ in the wetting phase $X^n_l$ is used, as long as the maximum mass fraction is not exceeded ($X^n_l("SpatialParams.FineResidualSaturationWetting") ); - lensMaterialParams_.setSnr( getParam("SpatialParams.FineResidualSaturationNonWetting") ); + lensMaterialParams_.setSnr( getParam("SpatialParams.FineResidualSaturationNonwetting") ); outerMaterialParams_.setSwr( getParam("SpatialParams.CoarseResidualSaturationWetting") ); - outerMaterialParams_.setSnr( getParam("SpatialParams.CoarseResidualSaturationNonWetting") ); + outerMaterialParams_.setSnr( getParam("SpatialParams.CoarseResidualSaturationNonwetting") ); // parameters for the Brooks-Corey law lensMaterialParams_.setPe( getParam("SpatialParams.FineBrooksCoreyEntryPressure") ); diff --git a/lecture/efm/1p2cvs2p/description/twophase.tex b/lecture/efm/1p2cvs2p/description/twophase.tex index bbdd4e1..efdd1cc 100755 --- a/lecture/efm/1p2cvs2p/description/twophase.tex +++ b/lecture/efm/1p2cvs2p/description/twophase.tex @@ -12,7 +12,7 @@ For the wetting phase (water): \label{DGLw} \end{equation} -For the non-wetting phase (gas or NAPL): +For the nonwetting phase (gas or NAPL): \begin{equation} \phi \varrho_{n} \frac{\partial ( S_{n})}{\partial t} - \nabla \cdot \left( \varrho_{n} \underbrace{\frac{k_{rn}}{\mu_n} \mathbf{K} \cdot diff --git a/lecture/efm/1p2cvs2p/exercise1.input b/lecture/efm/1p2cvs2p/exercise1.input index 5490f38..035285f 100644 --- a/lecture/efm/1p2cvs2p/exercise1.input +++ b/lecture/efm/1p2cvs2p/exercise1.input @@ -24,9 +24,9 @@ FineBrooksCoreyEntryPressure = 400 # entry pressure for the Brooks-Core CoarseBrooksCoreyLambda = 2.0 # pore size distribution parameter for the Brooks-Corey capillary pressure - saturation relationship in the coarse soil [-] CoarseBrooksCoreyEntryPressure = 200 # entry pressure for the Brooks-Corey capillary pressure - saturation relationship in the coarse soil [Pa] FineResidualSaturationWetting = 0.05 # residual saturation of the wetting phase in the fine soil [-] -FineResidualSaturationNonWetting = 0.3 # residual saturation of the non-wetting phase in the fine soil [-] +FineResidualSaturationNonWetting = 0.3 # residual saturation of the nonwetting phase in the fine soil [-] CoarseResidualSaturationWetting = 0.05 # residual saturation of the wetting phase in the coarse soil [-] -CoarseResidualSaturationNonWetting = 0.1 # residual saturation of the non-wetting phase in the coarse soil [-] +CoarseResidualSaturationNonWetting = 0.1 # residual saturation of the nonwetting phase in the coarse soil [-] ######## [Boundary] diff --git a/lecture/efm/1p2cvs2p/lens2pexercise1.cc b/lecture/efm/1p2cvs2p/lens2pexercise1.cc index f726aaa..79d723b 100644 --- a/lecture/efm/1p2cvs2p/lens2pexercise1.cc +++ b/lecture/efm/1p2cvs2p/lens2pexercise1.cc @@ -81,9 +81,9 @@ void usage(const char *progName, const std::string &errorMsg) "\t-SpatialParams.CoarseBrooksCoreyEntryPressure The entry pressure for the Brooks-Corey\n" "\t \t capillary pressure - saturation relationship in the coarse soil [Pa]\n" "\t-SpatialParams.FineResidualSaturationWetting The residual saturation of the wetting phase in the fine soil [-]" - "\t-SpatialParams.FineResidualSaturationNonWetting The residual saturation of the non-wetting phase in the fine soil [-]\n" + "\t-SpatialParams.FineResidualSaturationNonwetting The residual saturation of the nonwetting phase in the fine soil [-]\n" "\t-SpatialParams.CoarseResidualSaturationWetting The residual saturation of the wetting phase in the coarse soil [-]" - "\t-SpatialParams.CoarseResidualSaturationNonWetting The residual saturation of the non-wetting phase in the coarse soil [-]\n" + "\t-SpatialParams.CoarseResidualSaturationNonwetting The residual saturation of the nonwetting phase in the coarse soil [-]\n" "\t-Boundary.LowerPressure The Dirichlet pressure value for the boundary condition at the lower boundary [Pa]\n" "\t-Boundary.UpperPressure The Dirichlet pressure value for the boundary condition at the upper boundary [Pa]\n" "\t-Boundary.InfiltrationRate The infiltration rate [kg/(ms)]\n" diff --git a/lecture/efm/2p/description/entrypressure.tex b/lecture/efm/2p/description/entrypressure.tex index c8af392..04e0d46 100644 --- a/lecture/efm/2p/description/entrypressure.tex +++ b/lecture/efm/2p/description/entrypressure.tex @@ -38,7 +38,7 @@ Simulate the given problem.\\ \begin{table}[ht!] \begin{tabular}[t]{llll} -$\rho_n=$ & non-wetting phase density & $1.46 \cdot 10^{3}$ & [kg/m$^3$] \\ +$\rho_n=$ & nonwetting phase density & $1.46 \cdot 10^{3}$ & [kg/m$^3$] \\ $\rho_w=$ & wetting phase density & $1.0 \cdot 10^{3}$ & [kg/m$^3$] \\ $\Phi_1=$ & porosity in area one & $0.4$ & [-] \\ $\Phi_2=$ & porosity in area two & $0.38$ & [-] \\ diff --git a/lecture/efm/2p/description/entrypressure_solution.tex b/lecture/efm/2p/description/entrypressure_solution.tex index e519e39..12e5c05 100755 --- a/lecture/efm/2p/description/entrypressure_solution.tex +++ b/lecture/efm/2p/description/entrypressure_solution.tex @@ -66,7 +66,7 @@ For the wetting phase (water): \label{DGLw} \end{equation} -For the non-wetting phase (DNAPL): +For the nonwetting phase (DNAPL): \begin{equation} \phi \varrho_{n} \frac{\partial ( S_{n})}{\partial t} - \nabla \cdot \left( \varrho_{n} \underbrace{\frac{k_{rn}}{\mu_n} \mathbf{K} \cdot @@ -85,9 +85,9 @@ p_{n} = p_{w} + p_c ,\qquad S_{w} = (1 - S_{n}) \label{transp_equation_paramII} \begin{tabular}[t]{lll} $p_w$ & pressure of wetting phase & [Pa] \\ -$p_n$ & pressure of non-wetting phase & [Pa] \\ +$p_n$ & pressure of nonwetting phase & [Pa] \\ $S_w$ & saturation of wetting phase & [-] \\ -$S_n$ & saturation of non-wetting phase & [-] \\ +$S_n$ & saturation of nonwetting phase & [-] \\ $S_{wr}$ & residual saturation of wetting phase & [-] \\ $S_{nr}$ & residual saturation of non--wetting phase & [-] \\ $\phi$ & effective porosity & [-] \\ @@ -98,12 +98,12 @@ $\mu_w$ & dynamic viscosity of wetting phase &[Pa s] \\ $\mu_n$ & dynamic viscosity of non--wetting phase &[Pa s] \\ $\mathbf{K}$ & intrinsic permeability & [m$^2$] \\ $k_{rw}$ & relative permeability for wetting phase & [-] \\ -$k_{rn}$ & relative permeability for non-wetting phase & [-] \\ +$k_{rn}$ & relative permeability for nonwetting phase & [-] \\ $p_c$ & capillary pressure & [Pa] \\ $p_d$ & entry pressure, BC parameter & [Pa] \\ $\lambda$ & Brooks-Corey parameter & [-] \\ $q_w$ & mass source/sink rate for wetting phase & [kg/(m$^3$s)] \\ -$q_w$ & mass source/sink rate for non-wetting phase & [kg/(m$^3$s)] \\ +$q_w$ & mass source/sink rate for nonwetting phase & [kg/(m$^3$s)] \\ \end{tabular} \end{table} diff --git a/lecture/efm/2p/lens2pexercise2.cc b/lecture/efm/2p/lens2pexercise2.cc index 86fc32d..70afb5c 100644 --- a/lecture/efm/2p/lens2pexercise2.cc +++ b/lecture/efm/2p/lens2pexercise2.cc @@ -79,9 +79,9 @@ void usage(const char *progName, const std::string &errorMsg) "\t-SpatialParams.CoarseBrooksCoreyEntryPressure The entry pressure for the Brooks-Corey\n" "\t \t capillary pressure - saturation relationship in the coarse soil [Pa]\n" "\t-SpatialParams.FineResidualSaturationWetting The residual saturation of the wetting phase in the fine soil [-]" - "\t-SpatialParams.FineResidualSaturationNonWetting The residual saturation of the non-wetting phase in the fine soil [-]\n" + "\t-SpatialParams.FineResidualSaturationNonwetting The residual saturation of the nonwetting phase in the fine soil [-]\n" "\t-SpatialParams.CoarseResidualSaturationWetting The residual saturation of the wetting phase in the coarse soil [-]" - "\t-SpatialParams.CoarseResidualSaturationNonWetting The residual saturation of the non-wetting phase in the coarse soil [-]\n" + "\t-SpatialParams.CoarseResidualSaturationNonwetting The residual saturation of the nonwetting phase in the coarse soil [-]\n" "\t-Boundary.LowerPressure The Dirichlet pressure value for the boundary condition at the lower boundary [Pa]\n" "\t-Boundary.UpperPressure The Dirichlet pressure value for the boundary condition at the upper boundary [Pa]\n" "\t-Boundary.InfiltrationRate The infiltration rate [kg/(ms)]\n" diff --git a/lecture/efm/2p/lens2pexercise2.input b/lecture/efm/2p/lens2pexercise2.input index ad0fe3c..2c66ce1 100644 --- a/lecture/efm/2p/lens2pexercise2.input +++ b/lecture/efm/2p/lens2pexercise2.input @@ -19,9 +19,9 @@ FineBrooksCoreyEntryPressure = 500 # entry pressure for the Brooks-Core CoarseBrooksCoreyLambda = 2.0 # pore size distribution parameter for the Brooks-Corey capillary pressure - saturation relationship in the coarse soil [-] CoarseBrooksCoreyEntryPressure = 200 # entry pressure for the Brooks-Corey capillary pressure - saturation relationship in the coarse soil [Pa] FineResidualSaturationWetting = 0.18 # residual saturation of the wetting phase in the fine soil [-] -FineResidualSaturationNonWetting = 0.0 # residual saturation of the non-wetting phase in the fine soil [-] +FineResidualSaturationNonwetting = 0.0 # residual saturation of the nonwetting phase in the fine soil [-] CoarseResidualSaturationWetting = 0.05 # residual saturation of the wetting phase in the coarse soil [-] -CoarseResidualSaturationNonWetting = 0.0 # residual saturation of the non-wetting phase in the coarse soil [-] +CoarseResidualSaturationNonwetting = 0.0 # residual saturation of the nonwetting phase in the coarse soil [-] [Boundary] LowerPressure = 1.19612e5 # Dirichlet pressure value for the boundary condition at the lower boundary [Pa] diff --git a/lecture/mm/buckleyleverett/buckleyleverettexercise.cc b/lecture/mm/buckleyleverett/buckleyleverettexercise.cc index cda795f..6673a30 100644 --- a/lecture/mm/buckleyleverett/buckleyleverettexercise.cc +++ b/lecture/mm/buckleyleverett/buckleyleverettexercise.cc @@ -51,11 +51,11 @@ void usage(const char *progName, const std::string &errorMsg) "\t-SpatialParams.BrooksCoreyEntryPressure The entry pressure for the \n" "\t \t Brooks-Corey capillary pressure - saturation relationship [Pa]\n" "\t-SpatialParams.ResidualSaturationWetting The residual saturation of the wetting phase [-]\n" - "\t-SpatialParams.ResidualSaturationNonWetting The residual saturation of the non-wetting phase [-]\n" + "\t-SpatialParams.ResidualSaturationNonwetting The residual saturation of the nonwetting phase [-]\n" "\t-Fluid.DensityW The density of the wetting phase [kg/m^3]\n" - "\t-Fluid.DensityNW The density of the non-wetting phase [kg/m^3]\n" + "\t-Fluid.DensityNW The density of the nonwetting phase [kg/m^3]\n" "\t-Fluid.ViscosityW The dynamic viscosity of the wetting phase [kg/(ms)]\n" - "\t-Fluid.ViscosityNW The dynamic viscosity of the non-wetting phase [kg/(ms)]\n" + "\t-Fluid.ViscosityNW The dynamic viscosity of the nonwetting phase [kg/(ms)]\n" "\t-Grid.NumberOfCellsX The grid resolution in x direction [-]\n" "\n optional: \n" "\t-Output.ParaviewOutput Boolean, default is not writing ViPLab but paraview output"; diff --git a/lecture/mm/buckleyleverett/buckleyleverettexercise.input b/lecture/mm/buckleyleverett/buckleyleverettexercise.input index 4c6af3c..b5c3e9f 100644 --- a/lecture/mm/buckleyleverett/buckleyleverettexercise.input +++ b/lecture/mm/buckleyleverett/buckleyleverettexercise.input @@ -14,13 +14,13 @@ BrooksCoreyLambda = 4.0 # pore size distribution parameter f BrooksCoreyEntryPressure = 0 # entry pressure for the Brooks-Corey capillary pressure - saturation relationship [Pa] ResidualSaturationWetting = 0.2 # residual saturation of the wetting phase [-] -ResidualSaturationNonWetting = 0.2 # residual saturation of the non-wetting phase [-] +ResidualSaturationNonwetting = 0.2 # residual saturation of the nonwetting phase [-] [Fluid] DensityW = 1e3 # density of the wetting phase [kg/m^3] -DensityNW = 1e3 # density of the non-wetting phase [kg/m^3] +DensityNW = 1e3 # density of the nonwetting phase [kg/m^3] ViscosityW = 1e-3 # dynamic viscosity of the wetting phase [kg/(ms)] -ViscosityNW = 1e-3 # dynamic viscosity of the non-wetting phase [kg/(ms)] +ViscosityNW = 1e-3 # dynamic viscosity of the nonwetting phase [kg/(ms)] [Grid] UpperRight = 100 75 # extension of the domain (x,y) [m] diff --git a/lecture/mm/buckleyleverett/buckleyleverettproblem.hh b/lecture/mm/buckleyleverett/buckleyleverettproblem.hh index 65d4724..f779efb 100644 --- a/lecture/mm/buckleyleverett/buckleyleverettproblem.hh +++ b/lecture/mm/buckleyleverett/buckleyleverettproblem.hh @@ -88,10 +88,10 @@ public: PseudoOil::setDensity( getParam("Fluid.DensityW") ); PseudoH2O::setDensity( getParam("Fluid.DensityNW") ); - densityNonWetting_ = getParam("Fluid.DensityNW"); + densityNonwetting_ = getParam("Fluid.DensityNW"); swr_ = getParam("SpatialParams.ResidualSaturationWetting"); - snr_ = getParam("SpatialParams.ResidualSaturationNonWetting"); + snr_ = getParam("SpatialParams.ResidualSaturationNonwetting"); paraviewOutput_ = getParam("Output.paraviewOutput", true); } @@ -204,9 +204,9 @@ public: if (globalPos[0] > upperRight_[0] - eps_) //east boundary { // the volume flux should remain constant, when density is changed - // here, we multiply by the density of the NonWetting Phase + // here, we multiply by the density of the Nonwetting Phase const Scalar referenceDensity = 1000.0; - values[nPhaseIdx] = 3e-4 * densityNonWetting_/referenceDensity; + values[nPhaseIdx] = 3e-4 * densityNonwetting_/referenceDensity; } } /*! @@ -253,7 +253,7 @@ private: GlobalPosition upperRight_; Scalar eps_, swr_, snr_; Scalar pLeftBc_; - Scalar densityNonWetting_; + Scalar densityNonwetting_; BuckleyLeverettAnalytic analyticSolution_; ViplabOutput viplabOutput_; bool paraviewOutput_; diff --git a/lecture/mm/buckleyleverett/buckleyleverettspatialparams.hh b/lecture/mm/buckleyleverett/buckleyleverettspatialparams.hh index ee7d022..d623569 100644 --- a/lecture/mm/buckleyleverett/buckleyleverettspatialparams.hh +++ b/lecture/mm/buckleyleverett/buckleyleverettspatialparams.hh @@ -104,7 +104,7 @@ public: constPermeability_ = getParam("SpatialParams.Permeability")*permFactor; materialLawParams_.setSwr( getParam("SpatialParams.ResidualSaturationWetting") ); - materialLawParams_.setSnr( getParam("SpatialParams.ResidualSaturationNonWetting") ); + materialLawParams_.setSnr( getParam("SpatialParams.ResidualSaturationNonwetting") ); //set Brooks-Corey parameters materialLawParams_.setPe( getParam("SpatialParams.BrooksCoreyEntryPressure") ); materialLawParams_.setLambda( getParam("SpatialParams.BrooksCoreyLambda") ); diff --git a/lecture/mm/buckleyleverett/description/buckleyleverett.tex b/lecture/mm/buckleyleverett/description/buckleyleverett.tex index 3e6e7dd..5664076 100755 --- a/lecture/mm/buckleyleverett/description/buckleyleverett.tex +++ b/lecture/mm/buckleyleverett/description/buckleyleverett.tex @@ -230,14 +230,14 @@ the influence of the grid size! %capillary pressure - saturation relationship [Pa] % %ResidualSaturationWetting = 0.2 # residual saturation of the wetting phase [-] -%ResidualSaturationNonWetting = 0.2 # residual saturation of the non-wetting phase [-] +%ResidualSaturationNonwetting = 0.2 # residual saturation of the nonwetting phase [-] % %[Fluid] % %densityW = 1e3 # density of the wetting phase [kg/m^3] -%densityNW = 1e3 # density of the non-wetting phase [kg/m^3] +%densityNW = 1e3 # density of the nonwetting phase [kg/m^3] %viscosityW = 1e-3 # dynamic viscosity of the wetting phase [kg/(ms)] -%viscosityNW = 1e-3 # dynamic viscosity of the non-wetting phase [kg/(ms)] +%viscosityNW = 1e-3 # dynamic viscosity of the nonwetting phase [kg/(ms)] % %[Grid] %numberOfCellsX= 10 # grid resolution in x direction, max 200 diff --git a/lecture/mm/buckleyleverett/description/buckleyleverett_solution.tex b/lecture/mm/buckleyleverett/description/buckleyleverett_solution.tex index bc1e85e..016b61d 100755 --- a/lecture/mm/buckleyleverett/description/buckleyleverett_solution.tex +++ b/lecture/mm/buckleyleverett/description/buckleyleverett_solution.tex @@ -20,7 +20,7 @@ strongly dependent on the linearity.} \item What is the influence of viscosity on the front? Explain! {\em The larger the ratio of the water viscosity to the NAPL viscosity ($\frac{\mu_w}{\mu_n}$), the slower travels the front and the higher are the -water saturations. See Figure \ref{Visc}. The ``middle'' curve shows always the case with equal viscosities. The more bulky, slower front belongs in both figures to the case where the wetting-phase (injected) has a higher viscosity than the non-wetting-phase.} +water saturations. See Figure \ref{Visc}. The ``middle'' curve shows always the case with equal viscosities. The more bulky, slower front belongs in both figures to the case where the wetting-phase (injected) has a higher viscosity than the nonwetting-phase.} \begin{figure}[h] \begin{minipage}[b]{0.45\linewidth} \centering @@ -32,7 +32,7 @@ water saturations. See Figure \ref{Visc}. The ``middle'' curve shows always the \centering \includegraphics[width=0.9\linewidth]{\Pictpath/CompareViscw.pdf} \end{minipage} -\caption{{\it Influence of viscosity on the problem. Wetting phase is injected. Left: $\mu_w=const=10^{-3}$ Pa s, non-wetting phase viscosity is varied. Right: $\mu_n=const=10^{-3}$ Pa s, wetting phase viscosity is varied. }} +\caption{{\it Influence of viscosity on the problem. Wetting phase is injected. Left: $\mu_w=const=10^{-3}$ Pa s, nonwetting phase viscosity is varied. Right: $\mu_n=const=10^{-3}$ Pa s, wetting phase viscosity is varied. }} \protect\label{Visc} \end{figure} diff --git a/lecture/mm/co2plume/co2plumeshapeexercise.input b/lecture/mm/co2plume/co2plumeshapeexercise.input index 3ed4848..8eb6029 100644 --- a/lecture/mm/co2plume/co2plumeshapeexercise.input +++ b/lecture/mm/co2plume/co2plumeshapeexercise.input @@ -24,7 +24,7 @@ Porosity = 0.3 # porosity [MaterialLaw] Swr = 0.2 # [-] residual wetting phase sat. -Snr = 0.2 # [-] residual non-wetting phase sat. +Snr = 0.2 # [-] residual nonwetting phase sat. Pe = 5e3 # [Pa] capillary entry pressure Lambda = 2 # [-] Brooks Corey parameter diff --git a/lecture/mm/fuelcell/material/acosta.hh b/lecture/mm/fuelcell/material/acosta.hh index d142861..e5e5650 100644 --- a/lecture/mm/fuelcell/material/acosta.hh +++ b/lecture/mm/fuelcell/material/acosta.hh @@ -186,7 +186,7 @@ public: }; /*! - * \brief The relative permeability for the non-wetting phase + * \brief The relative permeability for the nonwetting phase * of the medium implied by van Genuchten's * parameterization. * @@ -220,7 +220,7 @@ public: /*! * \brief The derivative of the relative permeability for the - * non-wetting phase in regard to the wetting saturation of + * nonwetting phase in regard to the wetting saturation of * the medium as implied by the van Genuchten * parameterization. * diff --git a/lecture/mm/fuelcell/material/regularizedacosta.hh b/lecture/mm/fuelcell/material/regularizedacosta.hh index a73ddf8..b83f20a 100644 --- a/lecture/mm/fuelcell/material/regularizedacosta.hh +++ b/lecture/mm/fuelcell/material/regularizedacosta.hh @@ -242,7 +242,7 @@ public: /*! * \brief Regularized version of the relative permeability - * for the non-wetting phase of + * for the nonwetting phase of * the medium implied by the Acosta * parameterization. * @@ -266,7 +266,7 @@ public: /*! * \brief The derivative of the relative permeability for the - * non-wetting phase in regard to the wetting saturation of + * nonwetting phase in regard to the wetting saturation of * the medium as implied by the Acosta * parameterization. * diff --git a/lecture/mm/heavyoil/3p/parkervangenuchtenzero.hh b/lecture/mm/heavyoil/3p/parkervangenuchtenzero.hh index a54d375..c10d3fa 100644 --- a/lecture/mm/heavyoil/3p/parkervangenuchtenzero.hh +++ b/lecture/mm/heavyoil/3p/parkervangenuchtenzero.hh @@ -182,7 +182,7 @@ public: }; /*! - * \brief The relative permeability for the non-wetting phase + * \brief The relative permeability for the nonwetting phase * after the Model of Parker et al. (1987). * * See model 7 in "Comparison of the Three-Phase Oil Relative Permeability Models" @@ -230,7 +230,7 @@ public: }; /*! - * \brief The relative permeability for the non-wetting phase + * \brief The relative permeability for the nonwetting phase * of the medium implied by van Genuchten's * parameterization. * diff --git a/lecture/mm/heavyoil/3p/parkervangenuchtenzerohysteresis.hh b/lecture/mm/heavyoil/3p/parkervangenuchtenzerohysteresis.hh index 3084ee4..d8d35c7 100644 --- a/lecture/mm/heavyoil/3p/parkervangenuchtenzerohysteresis.hh +++ b/lecture/mm/heavyoil/3p/parkervangenuchtenzerohysteresis.hh @@ -181,7 +181,7 @@ public: }; /*! - * \brief The relative permeability for the non-wetting phase + * \brief The relative permeability for the nonwetting phase * after the Model of Parker et al. (1987). * * See model 7 in "Comparison of the Three-Phase Oil Relative Permeability Models" @@ -229,7 +229,7 @@ public: }; /*! - * \brief The relative permeability for the non-wetting phase + * \brief The relative permeability for the nonwetting phase * of the medium implied by van Genuchten's * parameterization. * diff --git a/lecture/mm/heavyoil/3p/parkervangenuchtenzerohysteresisparams.hh b/lecture/mm/heavyoil/3p/parkervangenuchtenzerohysteresisparams.hh index 744ae92..9ca5bf7 100644 --- a/lecture/mm/heavyoil/3p/parkervangenuchtenzerohysteresisparams.hh +++ b/lecture/mm/heavyoil/3p/parkervangenuchtenzerohysteresisparams.hh @@ -218,7 +218,7 @@ public: } /*! - * \brief Return the residual non-wetting saturation. + * \brief Return the residual nonwetting saturation. */ Scalar snr() const { @@ -232,7 +232,7 @@ public: } /*! - * \brief Set the residual non-wetting saturation. + * \brief Set the residual nonwetting saturation. */ void setSnr(Scalar input) { diff --git a/lecture/mm/heavyoil/3p/parkervangenuchtenzeroparams.hh b/lecture/mm/heavyoil/3p/parkervangenuchtenzeroparams.hh index 701006e..17c4a35 100644 --- a/lecture/mm/heavyoil/3p/parkervangenuchtenzeroparams.hh +++ b/lecture/mm/heavyoil/3p/parkervangenuchtenzeroparams.hh @@ -214,7 +214,7 @@ public: } /*! - * \brief Return the residual non-wetting saturation. + * \brief Return the residual nonwetting saturation. */ Scalar snr() const { @@ -228,7 +228,7 @@ public: } /*! - * \brief Set the residual non-wetting saturation. + * \brief Set the residual nonwetting saturation. */ void setSnr(Scalar input) { diff --git a/lecture/mm/heavyoil/3p/relativepermeabilityhysteresisparams.hh b/lecture/mm/heavyoil/3p/relativepermeabilityhysteresisparams.hh index feac569..4fe20cc 100644 --- a/lecture/mm/heavyoil/3p/relativepermeabilityhysteresisparams.hh +++ b/lecture/mm/heavyoil/3p/relativepermeabilityhysteresisparams.hh @@ -590,7 +590,7 @@ public: } /*! - * \brief Return the residual non-wetting saturation. + * \brief Return the residual nonwetting saturation. */ Scalar snr() const { @@ -604,7 +604,7 @@ public: } /*! - * \brief Set the residual non-wetting saturation. + * \brief Set the residual nonwetting saturation. */ void setSnr(Scalar input) { diff --git a/lecture/mm/mcwhorter/description/mcwhorter.tex b/lecture/mm/mcwhorter/description/mcwhorter.tex index ab4c191..1cf6944 100644 --- a/lecture/mm/mcwhorter/description/mcwhorter.tex +++ b/lecture/mm/mcwhorter/description/mcwhorter.tex @@ -165,14 +165,14 @@ on the shape of the front and the mathematical type of the problem %capillary pressure - saturation relationship [Pa] % %ResidualSaturationWetting = 0. # residual saturation of the wetting phase [-] -%ResidualSaturationNonWetting = 0. # residual saturation of the non-wetting phase [-] +%ResidualSaturationNonwetting = 0. # residual saturation of the nonwetting phase [-] % %[Fluid] % %densityW = 1e3 # density of the wetting phase [kg/m^3] -%densityNW = 1e3 # density of the non-wetting phase [kg/m^3] +%densityNW = 1e3 # density of the nonwetting phase [kg/m^3] %viscosityW = 1e-3 # dynamic viscosity of the wetting phase [kg/(ms)] -%viscosityNW = 1e-3 # dynamic viscosity of the non-wetting phase [kg/(ms)] +%viscosityNW = 1e-3 # dynamic viscosity of the nonwetting phase [kg/(ms)] % %[Grid] %numberOfCellsX= 10 # grid resolution in x direction, max 200 diff --git a/lecture/mm/mcwhorter/mcwhorterexercise.cc b/lecture/mm/mcwhorter/mcwhorterexercise.cc index c1c0caf..9406595 100644 --- a/lecture/mm/mcwhorter/mcwhorterexercise.cc +++ b/lecture/mm/mcwhorter/mcwhorterexercise.cc @@ -51,11 +51,11 @@ void usage(const char *progName, const std::string &errorMsg) "\t-SpatialParams.BrooksCoreyEntryPressure The entry pressure for the \n" "\t \t Brooks-Corey capillary pressure - saturation relationship [Pa]\n" "\t-SpatialParams.ResidualSaturationWetting The residual saturation of the wetting phase [-]\n" - "\t-SpatialParams.ResidualSaturationNonWetting The residual saturation of the non-wetting phase [-]\n" + "\t-SpatialParams.ResidualSaturationNonwetting The residual saturation of the nonwetting phase [-]\n" "\t-Fluid.DensityW The density of the wetting phase [kg/m^3]\n" - "\t-Fluid.DensityNW The density of the non-wetting phase [kg/m^3]\n" + "\t-Fluid.DensityNW The density of the nonwetting phase [kg/m^3]\n" "\t-Fluid.ViscosityW The dynamic viscosity of the wetting phase [kg/(ms)]\n" - "\t-Fluid.ViscosityNW The dynamic viscosity of the non-wetting phase [kg/(ms)]\n" + "\t-Fluid.ViscosityNW The dynamic viscosity of the nonwetting phase [kg/(ms)]\n" "\t-Grid.NumberOfCellsX The grid resolution in x direction [-]\n" "\n optional: \n" "\t-Output.ParaviewOutput Boolean, default is not writing ViPLab but paraview output"; diff --git a/lecture/mm/mcwhorter/mcwhorterexercise.input b/lecture/mm/mcwhorter/mcwhorterexercise.input index 3793d0c..80e6ba5 100644 --- a/lecture/mm/mcwhorter/mcwhorterexercise.input +++ b/lecture/mm/mcwhorter/mcwhorterexercise.input @@ -11,13 +11,13 @@ Porosity = 0.2 # porosity of the porous medium [-] BrooksCoreyLambda = 3.0 # pore size distribution parameter for the Brooks-Corey capillary pressure - saturation relationship [-] BrooksCoreyEntryPressure = 8000 # entry pressure for the Brooks-Corey capillary pressure - saturation relationship [Pa] ResidualSaturationWetting = 0.2 # residual saturation of the wetting phase [-] -ResidualSaturationNonWetting = 0.2 # residual saturation of the non-wetting phase [-] +ResidualSaturationNonwetting = 0.2 # residual saturation of the nonwetting phase [-] [Fluid] DensityW = 1e3 # density of the wetting phase [kg/m^3] -DensityNW = 1e3 # density of the non-wetting phase [kg/m^3] +DensityNW = 1e3 # density of the nonwetting phase [kg/m^3] ViscosityW = 1e-3 # dynamic viscosity of the wetting phase [kg/(ms)] -ViscosityNW = 1e-3 # dynamic viscosity of the non-wetting phase [kg/(ms)] +ViscosityNW = 1e-3 # dynamic viscosity of the nonwetting phase [kg/(ms)] [Grid] UpperRight = 2 1 # extension of the domain (x, y) [m] diff --git a/lecture/mm/mcwhorter/mcwhorterproblem.hh b/lecture/mm/mcwhorter/mcwhorterproblem.hh index 9e3032a..f6aef53 100644 --- a/lecture/mm/mcwhorter/mcwhorterproblem.hh +++ b/lecture/mm/mcwhorter/mcwhorterproblem.hh @@ -80,7 +80,7 @@ public: PseudoH2O::setDensity( getParam("Fluid.DensityNW") ); swr_ = getParam("SpatialParams.ResidualSaturationWetting"); - snr_ = getParam("SpatialParams.ResidualSaturationNonWetting"); + snr_ = getParam("SpatialParams.ResidualSaturationNonwetting"); paraviewOutput_ = getParam("Output.paraviewOutput", true); } -- GitLab From 93f053c02cdc3ca07f1f5b4a3c7e852c483388bd Mon Sep 17 00:00:00 2001 From: Mathis Kelm Date: Thu, 29 Oct 2020 16:47:44 +0100 Subject: [PATCH 2/2] [cleanup] Corrected further inconsistent spelling instances --- lecture/efm/1p2c_2p_2p2c/description/timescale_solution.tex | 2 +- lecture/efm/1p2cvs2p/exercise1.input | 4 ++-- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/lecture/efm/1p2c_2p_2p2c/description/timescale_solution.tex b/lecture/efm/1p2c_2p_2p2c/description/timescale_solution.tex index 0ec8c40..c1d7765 100755 --- a/lecture/efm/1p2c_2p_2p2c/description/timescale_solution.tex +++ b/lecture/efm/1p2c_2p_2p2c/description/timescale_solution.tex @@ -169,7 +169,7 @@ Alltogether this leads to 15 unknowns and 13 equations plus the two transport eq as long as $ 0 < S_\alpha < 1$. \item Only wetting phase is present: The mass fraction of, e.g., N$_2$ in the wetting phase $X^n_l$ is used, as long as the maximum mass fraction is not exceeded ($X^n_l