volumevariables.hh 7.49 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
21
 * \ingroup OnePModel
22
23
24
25
26
 * \brief Quantities required by the one-phase fully implicit model defined on a vertex.
 */
#ifndef DUMUX_1P_VOLUME_VARIABLES_HH
#define DUMUX_1P_VOLUME_VARIABLES_HH

Timo Koch's avatar
Timo Koch committed
27
#include <dumux/common/properties.hh>
Kilian Weishaupt's avatar
Kilian Weishaupt committed
28
#include <dumux/porousmediumflow/volumevariables.hh>
29
#include <dumux/material/fluidstates/immiscible.hh>
30

31
namespace Dumux {
32
33
34
35
36

/*!
 * \ingroup OnePModel
 * \brief Contains the quantities which are constant within a
 *        finite volume in the one-phase model.
37
38
 *
 * \tparam Traits Class encapsulating types to be used by the vol vars
39
 */
40
41
template<class Traits>
class OnePVolumeVariables : public PorousMediumFlowVolumeVariables< Traits, OnePVolumeVariables<Traits> >
42
{
43
44
    using ThisType = OnePVolumeVariables<Traits>;
    using ParentType = PorousMediumFlowVolumeVariables<Traits, ThisType>;
45

46
47
48
    using Scalar = typename Traits::PrimaryVariables::value_type;
    using Indices = typename Traits::ModelTraits::Indices;
    using PermeabilityType = typename Traits::PermeabilityType;
49

50
51
52
53
54
public:
    //! export the underlying fluid system
    using FluidSystem = typename Traits::FluidSystem;
    //! export the fluid state type
    using FluidState = typename Traits::FluidState;
55
56

    /*!
57
58
59
60
61
62
63
     * \brief Update all quantities for a given control volume
     *
     * \param elemSol A vector containing all primary variables connected to the element
     * \param problem The object specifying the problem which ought to
     *                be simulated
     * \param element An element which contains part of the control volume
     * \param scv The sub-control volume
64
     */
65
66
    template<class ElemSol, class Problem, class Element, class Scv>
    void update(const ElemSol &elemSol,
67
68
                const Problem &problem,
                const Element &element,
69
                const Scv& scv)
70
    {
71
        ParentType::update(elemSol, problem, element, scv);
72

73
        completeFluidState(elemSol, problem, element, scv, fluidState_);
74
        // porosity
75
76
        porosity_ = problem.spatialParams().porosity(element, scv, elemSol);
        permeability_ = problem.spatialParams().permeability(element, scv, elemSol);
77
78
79
    };

    /*!
80
81
82
83
84
85
86
87
     * \brief Set complete fluid state
     *
     * \param elemSol A vector containing all primary variables connected to the element
     * \param problem The object specifying the problem which ought to
     *                be simulated
     * \param element An element which contains part of the control volume
     * \param scv The sub-control volume
     * \param fluidState A container with the current (physical) state of the fluid
88
     */
89
90
    template<class ElemSol, class Problem, class Element, class Scv>
    static void completeFluidState(const ElemSol &elemSol,
91
92
                                   const Problem& problem,
                                   const Element& element,
93
                                   const Scv& scv,
94
95
                                   FluidState& fluidState)
    {
96
97
        Scalar t = ParentType::temperature(elemSol, problem, element, scv);

98
99
100
        fluidState.setTemperature(t);
        fluidState.setSaturation(/*phaseIdx=*/0, 1.);

101
        const auto& priVars = ParentType::extractDofPriVars(elemSol, scv);
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        fluidState.setPressure(/*phaseIdx=*/0, priVars[Indices::pressureIdx]);

        // saturation in a single phase is always 1 and thus redundant
        // to set. But since we use the fluid state shared by the
        // immiscible multi-phase models, so we have to set it here...
        fluidState.setSaturation(/*phaseIdx=*/0, 1.0);

        typename FluidSystem::ParameterCache paramCache;
        paramCache.updatePhase(fluidState, /*phaseIdx=*/0);

        Scalar value = FluidSystem::density(fluidState, paramCache, /*phaseIdx=*/0);
        fluidState.setDensity(/*phaseIdx=*/0, value);

        value = FluidSystem::viscosity(fluidState, paramCache, /*phaseIdx=*/0);
        fluidState.setViscosity(/*phaseIdx=*/0, value);

        // compute and set the enthalpy
119
        value = ParentType::enthalpy(fluidState, paramCache, /*phaseIdx=*/0);
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
        fluidState.setEnthalpy(/*phaseIdx=*/0, value);
    }

    /*!
     * \brief Return temperature \f$\mathrm{[K]}\f$ inside the sub-control volume.
     *
     * Note that we assume thermodynamic equilibrium, i.e. the
     * temperatures of the rock matrix and of all fluid phases are
     * identical.
     */
    Scalar temperature() const
    { return fluidState_.temperature(); }

    /*!
     * \brief Return the effective pressure \f$\mathrm{[Pa]}\f$ of a given phase within
     *        the control volume.
     */
    Scalar pressure(int phaseIdx = 0) const
    { return fluidState_.pressure(phaseIdx); }

140
141
142
143
144
145
    /*!
     * \brief Return the saturation
     */
    Scalar saturation(int phaseIdx = 0) const
    { return 1.0; }

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    /*!
     * \brief Return the mass density \f$\mathrm{[kg/m^3]}\f$ of a given phase within the
     *        control volume.
     */
    Scalar density(int phaseIdx = 0) const
    { return fluidState_.density(phaseIdx); }

    /*!
     * \brief Return the dynamic viscosity \f$\mathrm{[Pa s]}\f$ of the fluid within the
     *        control volume.
     */
    Scalar viscosity(int phaseIdx = 0) const
    { return fluidState_.viscosity(phaseIdx); }

    /*!
     * \brief Returns the mobility \f$\mathrm{[1/(Pa s)]}\f$.
     *
     * This function enables the use of ImplicitDarcyFluxVariables
     * with the 1p fully implicit model, ALTHOUGH the term mobility is
     * usually not employed in the one phase context.
     *
     * \param phaseIdx The phase index
     */
    Scalar mobility(int phaseIdx = 0) const
    { return 1.0/fluidState_.viscosity(phaseIdx); }

    /*!
     * \brief Return the average porosity \f$\mathrm{[-]}\f$ within the control volume.
     */
    Scalar porosity() const
    { return porosity_; }

178
179
180
    /*!
     * \brief Returns the permeability within the control volume in \f$[m^2]\f$.
     */
181
    const PermeabilityType& permeability() const
182
183
    { return permeability_; }

184
185
186
187
188
189
190
191
192
    /*!
     * \brief Return the fluid state of the control volume.
     */
    const FluidState &fluidState() const
    { return fluidState_; }

protected:
    FluidState fluidState_;
    Scalar porosity_;
193
    PermeabilityType permeability_;
194
195
196
197
198
};

}

#endif