problem_stokes.hh 13.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 * \ingroup NavierStokesTests
 * \brief A simple Navier-Stokes test problem for the staggered grid (Navier-)Stokes model.
 */
#ifndef DUMUX_STOKES_SUBPROBLEM_HH
#define DUMUX_STOKES_SUBPROBLEM_HH

#include <dune/grid/yaspgrid.hh>

29
#include <dumux/material/fluidsystems/1padapter.hh>
30
31
32
33
34
35
36
37
38
39
40
41
42
#include <dumux/material/fluidsystems/h2oair.hh>

#include <dumux/freeflow/navierstokes/problem.hh>
#include <dumux/discretization/staggered/freeflow/properties.hh>
#include <dumux/freeflow/compositional/navierstokesncmodel.hh>

namespace Dumux
{
template <class TypeTag>
class StokesSubProblem;

namespace Properties
{
43
44
45
46
// Create new type tags
namespace TTag {
struct StokesOnePTwoC { using InheritsFrom = std::tuple<NavierStokesNC, StaggeredFreeFlowModel>; };
} // end namespace TTag
47

48
// The fluid system
49
50
template<class TypeTag>
struct FluidSystem<TypeTag, TTag::StokesOnePTwoC>
51
{
52
  using H2OAir = FluidSystems::H2OAir<GetPropType<TypeTag, Properties::Scalar>>;
53
54
55
  static constexpr auto phaseIdx = H2OAir::liquidPhaseIdx; // simulate the water phase
  using type = FluidSystems::OnePAdapter<H2OAir, phaseIdx>;
};
56
57

// Set the grid type
58
59
template<class TypeTag>
struct Grid<TypeTag, TTag::StokesOnePTwoC> { using type = Dune::YaspGrid<2, Dune::EquidistantOffsetCoordinates<GetPropType<TypeTag, Properties::Scalar>, 2> >; };
60
61

// Set the problem property
62
63
template<class TypeTag>
struct Problem<TypeTag, TTag::StokesOnePTwoC> { using type = Dumux::StokesSubProblem<TypeTag> ; };
64

65
66
67
68
69
70
template<class TypeTag>
struct EnableFVGridGeometryCache<TypeTag, TTag::StokesOnePTwoC> { static constexpr bool value = true; };
template<class TypeTag>
struct EnableGridFluxVariablesCache<TypeTag, TTag::StokesOnePTwoC> { static constexpr bool value = true; };
template<class TypeTag>
struct EnableGridVolumeVariablesCache<TypeTag, TTag::StokesOnePTwoC> { static constexpr bool value = true; };
71
72

// Use moles
73
74
template<class TypeTag>
struct UseMoles<TypeTag, TTag::StokesOnePTwoC> { static constexpr bool value = true; };
75
76

// Do not replace one equation with a total mass balance
77
78
template<class TypeTag>
struct ReplaceCompEqIdx<TypeTag, TTag::StokesOnePTwoC> { static constexpr int value = 3; };
79
80
81
82
83
84
85
86
87
88
89
90
}

/*!
 * \ingroup NavierStokesTests
 * \brief  Test problem for the one-phase (Navier-) Stokes problem.
 *
 * Horizontal flow from left to right with a parabolic velocity profile.
 */
template <class TypeTag>
class StokesSubProblem : public NavierStokesProblem<TypeTag>
{
    using ParentType = NavierStokesProblem<TypeTag>;
91
92
93
94
95
    using GridView = GetPropType<TypeTag, Properties::GridView>;
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices;
    using BoundaryTypes = GetPropType<TypeTag, Properties::BoundaryTypes>;
    using FVGridGeometry = GetPropType<TypeTag, Properties::FVGridGeometry>;
96
97
    using FVElementGeometry = typename FVGridGeometry::LocalView;
    using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace;
98
99
    using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
    using NumEqVector = GetPropType<TypeTag, Properties::NumEqVector>;
100
101
102
103

    using Element = typename GridView::template Codim<0>::Entity;
    using GlobalPosition = typename Element::Geometry::GlobalCoordinate;

104
    using CouplingManager = GetPropType<TypeTag, Properties::CouplingManager>;
105
    using TimeLoopPtr = std::shared_ptr<TimeLoop<Scalar>>;
106
107
108

public:
    StokesSubProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry, std::shared_ptr<CouplingManager> couplingManager)
109
    : ParentType(fvGridGeometry, "Stokes"), eps_(1e-6), couplingManager_(couplingManager)
110
    {
111
        problemName_  =  getParam<std::string>("Vtk.OutputName") + "_" + getParamFromGroup<std::string>(this->paramGroup(), "Problem.Name");
112
113
114

        // determine whether to simulate a vertical or horizontal flow configuration
        verticalFlow_ = problemName_.find("vertical") != std::string::npos;
115
116
117
118
119
120
121
122
    }

    /*!
     * \brief The problem name.
     */
    const std::string& name() const
    {
        return problemName_;
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    }

   /*!
     * \name Problem parameters
     */
    // \{

   /*!
     * \brief Return the temperature within the domain in [K].
     *
     * This problem assumes a temperature of 10 degrees Celsius.
     */
    Scalar temperature() const
    { return 273.15 + 10; } // 10°C

   /*!
     * \brief Return the sources within the domain.
     *
     * \param globalPos The global position
     */
    NumEqVector sourceAtPos(const GlobalPosition &globalPos) const
    { return NumEqVector(0.0); }
    // \}

   /*!
     * \name Boundary conditions
     */
    // \{

    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param element The finite element
     * \param scvf The sub control volume face
     */
    BoundaryTypes boundaryTypes(const Element& element,
                                const SubControlVolumeFace& scvf) const
    {
        BoundaryTypes values;

        const auto& globalPos = scvf.dofPosition();

166
        if (verticalFlow_)
167
        {
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
            // inflow
            if(onUpperBoundary_(globalPos))
            {
                values.setDirichlet(Indices::velocityXIdx);
                values.setDirichlet(Indices::velocityYIdx);
                values.setDirichlet(Indices::conti0EqIdx + 1);
            }

            // left/right wall
            if (onRightBoundary_(globalPos) || (onLeftBoundary_(globalPos)))
            {
                values.setDirichlet(Indices::velocityXIdx);
                values.setDirichlet(Indices::velocityYIdx);
                values.setNeumann(Indices::conti0EqIdx);
                values.setNeumann(Indices::conti0EqIdx + 1);
            }

185
        }
186
        else // horizontal flow
187
        {
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
            if (onLeftBoundary_(globalPos))
            {
                values.setDirichlet(Indices::conti0EqIdx + 1);
                values.setDirichlet(Indices::velocityXIdx);
                values.setDirichlet(Indices::velocityYIdx);
            }
            else if (onRightBoundary_(globalPos))
            {
                values.setDirichlet(Indices::pressureIdx);
                values.setOutflow(Indices::conti0EqIdx + 1);
            }
            else
            {
                values.setDirichlet(Indices::velocityXIdx);
                values.setDirichlet(Indices::velocityYIdx);
                values.setNeumann(Indices::conti0EqIdx);
                values.setNeumann(Indices::conti0EqIdx + 1);
            }
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
        }

        if(couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf))
        {
            values.setCouplingNeumann(Indices::conti0EqIdx);
            values.setCouplingNeumann(Indices::conti0EqIdx + 1);
            values.setCouplingNeumann(Indices::momentumYBalanceIdx);
            values.setBJS(Indices::momentumXBalanceIdx);
        }

        return values;
    }

    /*!
     * \brief Evaluate the boundary conditions for a Dirichlet control volume.
     *
     * \param element The element
     * \param scvf The sub control volume face
     */
    PrimaryVariables dirichletAtPos(const GlobalPosition& globalPos) const
    {
        PrimaryVariables values(0.0);
        values = initialAtPos(globalPos);

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
        if (verticalFlow_)
        {
            // Check if this a pure diffusion problem.
            static const bool isDiffusionProblem = problemName_.find("diffusion") != std::string::npos;

            Scalar topMoleFraction = 1e-3;

            if (isDiffusionProblem)
            {
                // For the diffusion problem, change the top mole fraction after some time
                // in order to revert the concentration gradient.
                if (time() >= 1e10)
                    topMoleFraction = 0.0;
            }
            else // advection problem
            {
                // reverse the flow direction after some time for the advection problem
                if (time() >= 3e5)
                    values[Indices::velocityYIdx] *= -1.0;
            }

            if(globalPos[1] > this->fvGridGeometry().bBoxMax()[1] - eps_)
                values[Indices::conti0EqIdx + 1] = topMoleFraction;
        }
        else // horizontal flow
        {
            static const Scalar inletMoleFraction = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.InletMoleFraction");
            if(globalPos[0] < this->fvGridGeometry().bBoxMin()[0] + eps_)
                values[Indices::conti0EqIdx + 1] = inletMoleFraction;
        }

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

        return values;
    }

    /*!
     * \brief Evaluate the boundary conditions for a Neumann control volume.
     *
     * \param element The element for which the Neumann boundary condition is set
     * \param fvGeomentry The fvGeometry
     * \param elemVolVars The element volume variables
     * \param elemFaceVars The element face variables
     * \param scvf The boundary sub control volume face
     */
    template<class ElementVolumeVariables, class ElementFaceVariables>
    NumEqVector neumann(const Element& element,
                        const FVElementGeometry& fvGeometry,
                        const ElementVolumeVariables& elemVolVars,
                        const ElementFaceVariables& elemFaceVars,
                        const SubControlVolumeFace& scvf) const
    {
        NumEqVector values(0.0);

        if(couplingManager().isCoupledEntity(CouplingManager::stokesIdx, scvf))
        {
285
            values[Indices::momentumYBalanceIdx] = couplingManager().couplingData().momentumCouplingCondition(element, fvGeometry, elemVolVars, elemFaceVars, scvf);
286

287
            const auto tmp = couplingManager().couplingData().massCouplingCondition(element, fvGeometry, elemVolVars, elemFaceVars, scvf);
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
            values[Indices::conti0EqIdx] = tmp[0];
            values[Indices::conti0EqIdx + 1] = tmp[1];
        }
        return values;
    }

    // \}

    //! Get the coupling manager
    const CouplingManager& couplingManager() const
    { return *couplingManager_; }

   /*!
     * \name Volume terms
     */
    // \{

   /*!
     * \brief Evaluate the initial value for a control volume.
     *
     * \param globalPos The global position
     */
310
    PrimaryVariables initialAtPos(const GlobalPosition& globalPos) const
311
312
    {
        PrimaryVariables values(0.0);
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
        values[Indices::pressureIdx] = 1e5;

        static const Scalar vMax = getParamFromGroup<Scalar>(this->paramGroup(), "Problem.Velocity", 0.0);

        auto parabolicProfile = [&](const GlobalPosition& globalPos, int coord)
        {
            return vMax * (globalPos[coord] - this->fvGridGeometry().bBoxMin()[coord])
                        * (this->fvGridGeometry().bBoxMax()[coord] - globalPos[coord])
                        / (0.25 * (this->fvGridGeometry().bBoxMax()[coord] - this->fvGridGeometry().bBoxMin()[coord])
                        * (this->fvGridGeometry().bBoxMax()[coord] - this->fvGridGeometry().bBoxMin()[coord]));
        };

        if (verticalFlow_)
            values[Indices::velocityYIdx] = parabolicProfile(globalPos, 0);
        else // horizontal flow
            values[Indices::velocityXIdx] = parabolicProfile(globalPos, 1);
329
330
331
332
333
334
335

        return values;
    }

    /*!
     * \brief Returns the intrinsic permeability of required as input parameter for the Beavers-Joseph-Saffman boundary condition
     */
336
    Scalar permeability(const Element& element, const SubControlVolumeFace& scvf) const
337
    {
338
        return couplingManager().couplingData().darcyPermeability(element, scvf);
339
340
341
342
343
344
345
346
347
348
    }

    /*!
     * \brief Returns the alpha value required as input parameter for the Beavers-Joseph-Saffman boundary condition
     */
    Scalar alphaBJ(const SubControlVolumeFace& scvf) const
    {
        return 1.0;
    }

349
350
351
352
353
    /*!
     * \brief Sets the time loop pointer
     */
    void setTimeLoop(TimeLoopPtr timeLoop)
    { timeLoop_ = timeLoop; }
354

355
356
357
358
359
    /*!
     * \brief Returns the time
     */
    Scalar time() const
    { return timeLoop_->time(); }
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

    // \}

private:
    bool onLeftBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[0] < this->fvGridGeometry().bBoxMin()[0] + eps_; }

    bool onRightBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_; }

    bool onLowerBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[1] < this->fvGridGeometry().bBoxMin()[1] + eps_; }

    bool onUpperBoundary_(const GlobalPosition &globalPos) const
    { return globalPos[1] > this->fvGridGeometry().bBoxMax()[1] - eps_; }

    Scalar eps_;
377
    bool verticalFlow_;
378
    std::string problemName_;
379
    std::shared_ptr<CouplingManager> couplingManager_;
380
    TimeLoopPtr timeLoop_;
381
382
383
384
};
} //end namespace

#endif // DUMUX_STOKES_SUBPROBLEM_HH