fvproblem.hh 24.8 KB
Newer Older
1
2
3
4
5
6
7
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
8
 *   the Free Software Foundation, either version 3 of the License, or       *
9
10
11
12
13
14
15
16
17
18
19
20
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
21
22
 * \ingroup Common
 * \brief Base class for all finite volume problems
23
 */
24
25
#ifndef DUMUX_COMMON_FV_PROBLEM_HH
#define DUMUX_COMMON_FV_PROBLEM_HH
26

Timo Koch's avatar
Timo Koch committed
27
#include <memory>
28
#include <map>
Timo Koch's avatar
Timo Koch committed
29
30

#include <dune/common/fvector.hh>
31
#include <dune/grid/common/gridenums.hh>
32

Timo Koch's avatar
Timo Koch committed
33
34
#include <dumux/common/properties.hh>
#include <dumux/common/parameters.hh>
35
#include <dumux/discretization/method.hh>
36

37
38
#include <dumux/assembly/initialsolution.hh>

39
namespace Dumux {
40
41

/*!
42
 * \ingroup Common
43
44
45
46
47
48
49
50
51
52
 * \brief Base class for all finite-volume problems
 *
 * \note All quantities (regarding the units) are specified assuming a
 *       three-dimensional world. Problems discretized using 2D grids
 *       are assumed to be extruded by \f$1 m\f$ and 1D grids are assumed
 *       to have a cross section of \f$1m \times 1m\f$.
 */
template<class TypeTag>
class FVProblem
{
53
    using Implementation = GetPropType<TypeTag, Properties::Problem>;
54

55
56
57
    using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
    using FVElementGeometry = typename GridGeometry::LocalView;
    using GridView = typename GridGeometry::GridView;
58
59
    using SubControlVolume = typename FVElementGeometry::SubControlVolume;
    using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace;
60
61
    using Element = typename GridView::template Codim<0>::Entity;
    using GlobalPosition = typename Element::Geometry::GlobalCoordinate;
62
63

    enum { dim = GridView::dimension };
64

65
66
    using PointSource = GetPropType<TypeTag, Properties::PointSource>;
    using PointSourceHelper = GetPropType<TypeTag, Properties::PointSourceHelper>;
67
68
    using PointSourceMap = std::map< std::pair<std::size_t, std::size_t>,
                                     std::vector<PointSource> >;
69

70
    using GridVariables = GetPropType<TypeTag, Properties::GridVariables>;
71
    using ElementFluxVariablesCache = typename GetPropType<TypeTag, Properties::GridFluxVariablesCache>::LocalView;
72
    using ElementVolumeVariables = typename GridVariables::GridVolumeVariables::LocalView;
73
    using VolumeVariables = typename ElementVolumeVariables::VolumeVariables;
74

75
76
    using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;

77
78
    static constexpr bool isBox = GridGeometry::discMethod == DiscretizationMethod::box;
    static constexpr bool isStaggered = GridGeometry::discMethod == DiscretizationMethod::staggered;
79
80
81
82
83

    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
    using NumEqVector = GetPropType<TypeTag, Properties::NumEqVector>;
    using BoundaryTypes = GetPropType<TypeTag, Properties::BoundaryTypes>;
84

85
public:
86
87
88
89
90
91
92
93
94
    //! export traits of this problem
    struct Traits
    {
        using Scalar = FVProblem::Scalar;
        using PrimaryVariables = FVProblem::PrimaryVariables;
        using NumEqVector = FVProblem::NumEqVector;
        using BoundaryTypes = FVProblem::BoundaryTypes;
    };

95
96
    /*!
     * \brief Constructor
97
     * \param gridGeometry The finite volume grid geometry
98
     * \param paramGroup The parameter group in which to look for runtime parameters first (default is "")
99
     */
100
101
    FVProblem(std::shared_ptr<const GridGeometry> gridGeometry, const std::string& paramGroup = "")
    : gridGeometry_(gridGeometry)
102
    , paramGroup_(paramGroup)
103
104
    {
        // set a default name for the problem
105
        problemName_ = getParamFromGroup<std::string>(paramGroup, "Problem.Name");
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    }

    /*!
     * \brief The problem name.
     *
     * This is used as a prefix for files generated by the simulation.
     * It could be either overwritten by the problem files, or simply
     * declared over the setName() function in the application file.
     */
    const std::string& name() const
    {
        return problemName_;
    }

    /*!
     * \brief Set the problem name.
     *
     * This static method sets the simulation name, which should be
     * called before the application problem is declared! If not, the
     * default name "sim" will be used.
     *
     * \param newName The problem's name
     */
    void setName(const std::string& newName)
    {
        problemName_ = newName;
    }

    /*!
     * \name Boundary conditions and sources defining the problem
     */
    // \{

    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param element The finite element
     * \param scv The sub control volume
     */
    BoundaryTypes boundaryTypes(const Element &element,
                                const SubControlVolume &scv) const
    {
        if (!isBox)
            DUNE_THROW(Dune::InvalidStateException,
                       "boundaryTypes(..., scv) called for cell-centered method.");

        // forward it to the method which only takes the global coordinate
        return asImp_().boundaryTypesAtPos(scv.dofPosition());
    }

    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param element The finite element
     * \param scvf The sub control volume face
     */
    BoundaryTypes boundaryTypes(const Element &element,
                                const SubControlVolumeFace &scvf) const
    {
        if (isBox)
            DUNE_THROW(Dune::InvalidStateException,
                       "boundaryTypes(..., scvf) called for box method.");

        // forward it to the method which only takes the global coordinate
        return asImp_().boundaryTypesAtPos(scvf.ipGlobal());
    }

    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param globalPos The position of the finite volume in global coordinates
     */
    BoundaryTypes boundaryTypesAtPos(const GlobalPosition &globalPos) const
    {
        //! As a default, i.e. if the user's problem does not overload any boundaryTypes method
        //! set Dirichlet boundary conditions everywhere for all primary variables
        BoundaryTypes bcTypes;
        bcTypes.setAllDirichlet();
        return bcTypes;
    }

    /*!
     * \brief Evaluate the boundary conditions for a dirichlet
192
     *        control volume face.
193
194
195
     *
     * \param element The finite element
     * \param scvf the sub control volume face
196
     * \note used for cell-centered discretization schemes
197
198
199
200
201
202
203
204
205
206
207
208
209
210
     *
     * The method returns the boundary types information.
     */
    PrimaryVariables dirichlet(const Element &element, const SubControlVolumeFace &scvf) const
    {
        // forward it to the method which only takes the global coordinate
        if (isBox)
        {
            DUNE_THROW(Dune::InvalidStateException, "dirichlet(scvf) called for box method.");
        }
        else
            return asImp_().dirichletAtPos(scvf.ipGlobal());
    }

211
212
213
214
215
216
217
218
219
220
    /*!
     * \brief Evaluate the boundary conditions for a dirichlet
     *        control volume.
     *
     * \param element The finite element
     * \param scv the sub control volume
     * \note used for cell-centered discretization schemes
     *
     * The method returns the boundary types information.
     */
221
222
223
    PrimaryVariables dirichlet(const Element &element, const SubControlVolume &scv) const
    {
        // forward it to the method which only takes the global coordinate
224
        if (!isBox && !isStaggered)
225
        {
226
            DUNE_THROW(Dune::InvalidStateException, "dirichlet(scv) called for other than box or staggered method.");
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
        }
        else
            return asImp_().dirichletAtPos(scv.dofPosition());
    }

    /*!
     * \brief Evaluate the boundary conditions for a dirichlet
     *        control volume.
     *
     * \param globalPos The position of the center of the finite volume
     *            for which the dirichlet condition ought to be
     *            set in global coordinates
     */
    PrimaryVariables dirichletAtPos(const GlobalPosition &globalPos) const
    {
        // Throw an exception (there is no reasonable default value
        // for Dirichlet conditions)
        DUNE_THROW(Dune::InvalidStateException,
                   "The problem specifies that some boundary "
                   "segments are dirichlet, but does not provide "
                   "a dirichlet() or a dirichletAtPos() method.");
    }

250
251
252
    /*!
     * \brief If internal Dirichlet contraints are enabled
     * Enables / disables internal (non-boundary) Dirichlet constraints. If this is overloaded
253
254
255
256
257
258
259
260
261
262
263
264
     * to return true, the assembler calls problem.hasInternalDirichletConstraint(element, scv).
     * This means you have to implement the following member function
     *
     *    bool hasInternalDirichletConstraint(const Element& element, const SubControlVolume& scv) const;
     *
     * which returns a bool signifying whether the dof associated with the element/scv pair is contraint.
     * If true is returned for a dof, the assembler calls problem.internalDiririchlet(element, scv).
     * This means you have to additionally implement the following member function
     *
     *    PrimaryVariables internalDiririchlet(const Element& element, const SubControlVolume& scv) const;
     *
     * which returns the enforced Dirichlet values the dof associated with the element/scv pair.
265
266
267
268
     */
    static constexpr bool enableInternalDirichletConstraints()
    { return false; }

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    /*!
     * \brief Evaluate the boundary conditions for a neumann
     *        boundary segment.
     *
     * This is the method for the case where the Neumann condition is
     * potentially solution dependent
     *
     * \param element The finite element
     * \param fvGeometry The finite-volume geometry
     * \param elemVolVars All volume variables for the element
     * \param elemFluxVarsCache Flux variables caches for all faces in stencil
     * \param scvf The sub control volume face
     *
     * Negative values mean influx.
     * E.g. for the mass balance that would be the mass flux in \f$ [ kg / (m^2 \cdot s)] \f$.
     */
    NumEqVector neumann(const Element& element,
                        const FVElementGeometry& fvGeometry,
                        const ElementVolumeVariables& elemVolVars,
                        const ElementFluxVariablesCache& elemFluxVarsCache,
                        const SubControlVolumeFace& scvf) const
    {
        // forward it to the interface with only the global position
        return asImp_().neumannAtPos(scvf.ipGlobal());
    }

295
296
297
298
299
300
    /*!
     * \brief Evaluate the boundary conditions for a neumann
     *        boundary segment.
     *
     * \param globalPos The position of the boundary face's integration point in global coordinates
     *
301
     * Negative values mean influx.
302
303
     * E.g. for the mass balance that would be the mass flux in \f$ [ kg / (m^2 \cdot s)] \f$.
     */
304
    NumEqVector neumannAtPos(const GlobalPosition &globalPos) const
305
306
307
    {
        //! As a default, i.e. if the user's problem does not overload any neumann method
        //! return no-flow Neumann boundary conditions at all Neumann boundaries
308
        return NumEqVector(0.0);
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    }

    /*!
     * \brief Evaluate the source term for all phases within a given
     *        sub-control-volume.
     *
     * This is the method for the case where the source term is
     * potentially solution dependent and requires some quantities that
     * are specific to the fully-implicit method.
     *
     * \param element The finite element
     * \param fvGeometry The finite-volume geometry
     * \param elemVolVars All volume variables for the element
     * \param scv The sub control volume
     *
324
     * For this method, the return parameter stores the conserved quantity rate
325
326
327
328
     * generated or annihilate per volume unit. Positive values mean
     * that the conserved quantity is created, negative ones mean that it vanishes.
     * E.g. for the mass balance that would be a mass rate in \f$ [ kg / (m^3 \cdot s)] \f$.
     */
329
    NumEqVector source(const Element &element,
Sina Ackermann's avatar
Sina Ackermann committed
330
331
332
                       const FVElementGeometry& fvGeometry,
                       const ElementVolumeVariables& elemVolVars,
                       const SubControlVolume &scv) const
333
334
335
336
337
338
339
340
341
342
343
344
345
    {
        // forward to solution independent, fully-implicit specific interface
        return asImp_().sourceAtPos(scv.center());
    }

    /*!
     * \brief Evaluate the source term for all phases within a given
     *        sub-control-volume.
     *
     * \param globalPos The position of the center of the finite volume
     *            for which the source term ought to be
     *            specified in global coordinates
     *
346
     * For this method, the values parameter stores the conserved quantity rate
347
348
349
350
     * generated or annihilate per volume unit. Positive values mean
     * that the conserved quantity is created, negative ones mean that it vanishes.
     * E.g. for the mass balance that would be a mass rate in \f$ [ kg / (m^3 \cdot s)] \f$.
     */
351
    NumEqVector sourceAtPos(const GlobalPosition &globalPos) const
352
353
354
    {
        //! As a default, i.e. if the user's problem does not overload any source method
        //! return 0.0 (no source terms)
355
        return NumEqVector(0.0);
356
357
358
359
360
361
362
363
364
    }

    /*!
     * \brief Applies a vector of point sources. The point sources
     *        are possibly solution dependent.
     *
     * \param pointSources A vector of PointSource s that contain
              source values for all phases and space positions.
     *
365
     * For this method, the values method of the point source
366
367
368
369
370
371
372
373
374
375
376
377
     * has to return the absolute rate values in units
     * \f$ [ \textnormal{unit of conserved quantity} / s ] \f$.
     * Positive values mean that the conserved quantity is created, negative ones mean that it vanishes.
     * E.g. for the mass balance that would be a mass rate in \f$ [ kg / s ] \f$.
     */
    void addPointSources(std::vector<PointSource>& pointSources) const {}

    /*!
     * \brief Evaluate the point sources (added by addPointSources)
     *        for all phases within a given sub-control-volume.
     *
     * This is the method for the case where the point source is
378
     * solution dependent
379
380
381
382
383
384
385
     *
     * \param source A single point source
     * \param element The finite element
     * \param fvGeometry The finite-volume geometry
     * \param elemVolVars All volume variables for the element
     * \param scv The sub control volume
     *
386
     * For this method, the values() method of the point sources returns
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
     * the absolute conserved quantity rate generated or annihilate in
     * units \f$ [ \textnormal{unit of conserved quantity} / s ] \f$.
     * Positive values mean that the conserved quantity is created, negative ones mean that it vanishes.
     * E.g. for the mass balance that would be a mass rate in \f$ [ kg / s ] \f$.
     */
    void pointSource(PointSource& source,
                     const Element &element,
                     const FVElementGeometry& fvGeometry,
                     const ElementVolumeVariables& elemVolVars,
                     const SubControlVolume &scv) const
    {
        // forward to space dependent interface method
        asImp_().pointSourceAtPos(source, source.position());
    }

    /*!
     * \brief Evaluate the point sources (added by addPointSources)
     *        for all phases within a given sub-control-volume.
     *
     * This is the method for the case where the point source is space dependent
     *
     * \param pointSource A single point source
     * \param globalPos The point source position in global coordinates
     *
     * For this method, the \a values() method of the point sources returns
     * the absolute conserved quantity rate generated or annihilate in
     * units \f$ [ \textnormal{unit of conserved quantity} / s ] \f$. Positive values mean
     * that the conserved quantity is created, negative ones mean that it vanishes.
     * E.g. for the mass balance that would be a mass rate in \f$ [ kg / s ] \f$.
     */
    void pointSourceAtPos(PointSource& pointSource,
                          const GlobalPosition &globalPos) const {}

420
421
422
423
424
425
426
427
428
429
430
    /*!
     * \brief Add source term derivative to the Jacobian
     * \note Only needed in case of analytic differentiation and solution dependent sources
     */
    template<class MatrixBlock>
    void addSourceDerivatives(MatrixBlock& block,
                              const Element& element,
                              const FVElementGeometry& fvGeometry,
                              const VolumeVariables& volVars,
                              const SubControlVolume& scv) const {}

431
432
433
434
435
436
    /*!
     * \brief Adds contribution of point sources for a specific sub control volume
     *        to the values.
     *        Caution: Only overload this method in the implementation if you know
     *                 what you are doing.
     */
437
    NumEqVector scvPointSources(const Element &element,
Sina Ackermann's avatar
Sina Ackermann committed
438
439
440
                                const FVElementGeometry& fvGeometry,
                                const ElementVolumeVariables& elemVolVars,
                                const SubControlVolume &scv) const
441
    {
442
        NumEqVector source(0);
443
        auto scvIdx = scv.indexInElement();
444
        auto key = std::make_pair(gridGeometry_->elementMapper().index(element), scvIdx);
445
446
447
448
449
        if (pointSourceMap_.count(key))
        {
            // Add the contributions to the dof source values
            // We divide by the volume. In the local residual this will be multiplied with the same
            // factor again. That's because the user specifies absolute values in kg/s.
450
            const auto volume = scv.volume()*elemVolVars[scv].extrusionFactor();
451

452
            for (const auto& ps : pointSourceMap_.at(key))
453
            {
454
455
456
                // we make a copy of the local point source here
                auto pointSource = ps;

457
458
459
460
461
462
463
464
465
466
467
468
469
                // Note: two concepts are implemented here. The PointSource property can be set to a
                // customized point source function achieving variable point sources,
                // see TimeDependentPointSource for an example. The second imitated the standard
                // dumux source interface with solDependentPointSource / pointSourceAtPos, methods
                // that can be overloaded in the actual problem class also achieving variable point sources.
                // The first one is more convenient for simple function like a time dependent source.
                // The second one might be more convenient for e.g. a solution dependent point source.

                // we do an update e.g. used for TimeDependentPointSource
                pointSource.update(asImp_(), element, fvGeometry, elemVolVars, scv);
                // call convienience problem interface function
                asImp_().pointSource(pointSource, element, fvGeometry, elemVolVars, scv);
                // at last take care about multiplying with the correct volume
470
                pointSource /= volume*pointSource.embeddings();
471
472
473
474
475
476
477
478
                // add the point source values to the local residual
                source += pointSource.values();
            }
        }

        return source;
    }

479
480
481
482
    /*!
     * \brief Compute the point source map, i.e. which scvs have point source contributions
     * \note Call this on the problem before assembly if you want to enable point sources set
     *       via the addPointSources member function.
483
     */
484
    void computePointSourceMap()
485
486
    {
        // clear the given point source maps in case it's not empty
487
        pointSourceMap_.clear();
488
489
490
491
492
493
494
495
496

        // get and apply point sources if any given in the problem
        std::vector<PointSource> sources;
        asImp_().addPointSources(sources);

        // if there are point sources compute the DOF to point source map
        if (!sources.empty())
        {
            // calculate point source locations and save them in a map
497
            PointSourceHelper::computePointSourceMap(*gridGeometry_,
498
                                                     sources,
499
                                                     pointSourceMap_);
500
501
502
        }
    }

503
504
505
506
507
508
    /*!
     * \brief Get the point source map. It stores the point sources per scv
     */
    const PointSourceMap& pointSourceMap() const
    { return pointSourceMap_; }

509
510
    /*!
     * \brief Applies the initial solution for all degrees of freedom of the grid.
511
     * \param sol the initial solution vector
512
     */
513
514
    void applyInitialSolution(SolutionVector& sol) const
    {
515
        assembleInitialSolution(sol, asImp_());
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
    }

    /*!
     * \brief Evaluate the initial value for
     * an element (for cell-centered models)
     * or vertex (for box / vertex-centered models)
     *
     * \param entity The dof entity (element or vertex)
     */
    template<class Entity>
    PrimaryVariables initial(const Entity& entity) const
    {
        static_assert(int(Entity::codimension) == 0 || int(Entity::codimension) == dim, "Entity must be element or vertex");
        return asImp_().initialAtPos(entity.geometry().center());
    }

    /*!
     * \brief Evaluate the initial value for a control volume.
     *
     * \param globalPos The global position
     */
    PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const
    {
        // Throw an exception (there is no reasonable default value
        // for initial values)
        DUNE_THROW(Dune::InvalidStateException,
                   "The problem does not provide "
                   "an initial() or an initialAtPos() method.");
    }

    /*!
     * \brief Return how much the domain is extruded at a given sub-control volume.
     *
     * This means the factor by which a lower-dimensional (1D or 2D)
     * entity needs to be expanded to get a full dimensional cell. The
     * default is 1.0 which means that 1D problems are actually
     * thought as pipes with a cross section of 1 m^2 and 2D problems
     * are assumed to extend 1 m to the back.
     */
555
556
557
558
    template<class ElementSolution>
    Scalar extrusionFactor(const Element& element,
                           const SubControlVolume& scv,
                           const ElementSolution& elemSol) const
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
    {
        // forward to generic interface
        return asImp_().extrusionFactorAtPos(scv.center());
    }

    /*!
     * \brief Return how much the domain is extruded at a given position.
     *
     * This means the factor by which a lower-dimensional (1D or 2D)
     * entity needs to be expanded to get a full dimensional cell. The
     * default is 1.0 which means that 1D problems are actually
     * thought as pipes with a cross section of 1 m^2 and 2D problems
     * are assumed to extend 1 m to the back.
     */
    Scalar extrusionFactorAtPos(const GlobalPosition &globalPos) const
    {
Timo Koch's avatar
Timo Koch committed
575
576
        // As a default, i.e. if the user's problem does not overload
        // any extrusion factor method, return 1.0
577
578
579
580
581
        return 1.0;
    }

    // \}

582
    //! The finite volume grid geometry
583
    const GridGeometry& gridGeometry() const
584
    { return *gridGeometry_; }
585

586
587
588
589
    //! The parameter group in which to retrieve runtime parameters
    const std::string& paramGroup() const
    { return paramGroup_; }

590
591
592
593
594
595
596
597
598
599
600
protected:
    //! Returns the implementation of the problem (i.e. static polymorphism)
    Implementation &asImp_()
    { return *static_cast<Implementation *>(this); }

    //! \copydoc asImp_()
    const Implementation &asImp_() const
    { return *static_cast<const Implementation *>(this); }

private:
    //! The finite volume grid geometry
601
    std::shared_ptr<const GridGeometry> gridGeometry_;
602

603
604
605
    //! The parameter group in which to retrieve runtime parameters
    std::string paramGroup_;

606
607
608
609
    //! The name of the problem
    std::string problemName_;

    //! A map from an scv to a vector of point sources
610
    PointSourceMap pointSourceMap_;
611
612
613
614
615
};

} // end namespace Dumux

#endif