heterogeneousproblemni.hh 20.7 KB
Newer Older
1
2
3
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
4
 *   See the file COPYING for full copying permissions.                      *
5
6
7
8
9
10
11
12
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
13
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
14
15
16
17
18
19
20
21
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
22
 * \brief Definition of a problem, where CO2 is injected under a reservoir.
23
24
25
26
 */
#ifndef DUMUX_HETEROGENEOUS_NI_PROBLEM_NI_HH
#define DUMUX_HETEROGENEOUS_NI_PROBLEM_NI_HH

27
28
#include <dune/common/version.hh>

29
30
31
#if HAVE_ALUGRID
#include <dune/grid/alugrid/2d/alugrid.hh>
#else
Christoph Grueninger's avatar
[co2ni]    
Christoph Grueninger committed
32
#warning ALUGrid is necessary for this test.
33
34
35
#endif

#include <dune/grid/io/file/dgfparser/dgfs.hh>
36
37
#include <dumux/implicit/co2ni/co2nimodel.hh>
#include <dumux/implicit/co2ni/co2nivolumevariables.hh>
38
#include <dumux/material/fluidsystems/brineco2fluidsystem.hh>
39
#include <dumux/implicit/common/implicitporousmediaproblem.hh>
40
#include <dumux/implicit/box/intersectiontovertexbc.hh>
41
#include <test/implicit/co2/heterogeneousspatialparameters.hh>
42
43
44
45
46
47
48
49
50

#include "heterogeneousco2tables.hh"

#define ISOTHERMAL 0

namespace Dumux
{

template <class TypeTag>
51
class HeterogeneousNIProblem;
52
53
54

namespace Properties
{
55
56
57
NEW_TYPE_TAG(HeterogeneousNIProblem, INHERITS_FROM(TwoPTwoCNI, HeterogeneousSpatialParams));
NEW_TYPE_TAG(HeterogeneousNIBoxProblem, INHERITS_FROM(BoxModel, HeterogeneousNIProblem));
NEW_TYPE_TAG(HeterogeneousNICCProblem, INHERITS_FROM(CCModel, HeterogeneousNIProblem));
58
59
60
61


// Set the grid type
#if HAVE_ALUGRID
62
SET_TYPE_PROP(HeterogeneousNIProblem, Grid, Dune::ALUGrid<2, 2, Dune::cube, Dune::nonconforming>);
63
#else
64
SET_TYPE_PROP(HeterogeneousNIProblem, Grid, Dune::YaspGrid<2>);
65
66
67
#endif

// Set the problem property
68
SET_PROP(HeterogeneousNIProblem, Problem)
69
{
70
    typedef Dumux::HeterogeneousNIProblem<TypeTag> type;
71
72
73
};

// Set fluid configuration
74
SET_PROP(HeterogeneousNIProblem, FluidSystem)
75
76
77
78
79
{
    typedef Dumux::BrineCO2FluidSystem<TypeTag> type;
};

// Set the CO2 table to be used; in this case not the the default table
80
SET_TYPE_PROP(HeterogeneousNIProblem, CO2Table, Dumux::Heterogeneous::CO2Tables);
81
// Set the salinity mass fraction of the brine in the reservoir
82
SET_SCALAR_PROP(HeterogeneousNIProblem, ProblemSalinity, 1e-1);
83
84

//! the CO2 Model and VolumeVariables properties
85
86
SET_TYPE_PROP(HeterogeneousNIProblem, Model, CO2NIModel<TypeTag>);
SET_TYPE_PROP(HeterogeneousNIProblem, VolumeVariables, CO2NIVolumeVariables<TypeTag>);
87
88

// Enable gravity
89
SET_BOOL_PROP(HeterogeneousNIProblem, ProblemEnableGravity, true);
90

91
92
SET_BOOL_PROP(HeterogeneousNIProblem, ImplicitEnableJacobianRecycling, false);
SET_BOOL_PROP(HeterogeneousNIProblem, VtkAddVelocity, false);
93
94

SET_BOOL_PROP(HeterogeneousNIProblem, UseMoles, false);
95
96
97
98
99
}


/*!
 * \ingroup CO2NIModel
100
 * \ingroup ImplicitTestProblems
101
102
103
104
105
106
107
108
109
110
111
112
113
114
 * \brief Problem where CO2 is injected under a low permeable layer in a depth of 1200m.
 *
 * The domain is sized 200m times 100m and consists of four layers, a
 * permeable reservoir layer at the bottom, a barrier rock layer with reduced permeability followed by another reservoir layer
 * and at the top a barrier rock layer with a very low permeablility.
 *
 * CO2 is injected at the permeable bottom layer
 * from the left side. The domain is initially filled with brine.
 *
 * The grid is unstructered and permeability and porosity for the elements are read in from the grid file. The grid file
 * also contains so-called boundary ids which can be used assigned during the grid creation in order to differentiate
 * between different parts of the boundary.
 * These boundary ids can be imported into the problem where the boundary conditions can then be assigned accordingly.
 *
115
116
117
 * The model is able to use either mole or mass fractions. The property useMoles can be set to either true or false in the
 * problem file. Make sure that the according units are used in the problem setup. The default setting for useMoles is false.
 *
118
119
 * To run the simulation execute the following line in shell (works with the box and cell centered spatial discretization method):
 * <tt>./test_ccco2ni </tt> or <tt>./test_boxco2ni </tt>
120
 */
121
template <class TypeTag >
122
class HeterogeneousNIProblem : public ImplicitPorousMediaProblem<TypeTag>
123
{
124
    typedef ImplicitPorousMediaProblem<TypeTag> ParentType;
125
126
127
128
129
130
131
132

    typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
    typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
    typedef Dune::GridPtr<Grid> GridPointer;
    typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
    typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
    typedef typename GET_PROP_TYPE(TypeTag, VolumeVariables) VolumeVariables;

133
134
    static const bool useMoles = GET_PROP_VALUE(TypeTag, UseMoles);

135
136
137
138
139
140
141
    enum {
        // Grid and world dimension
        dim = GridView::dimension,
        dimWorld = GridView::dimensionworld
    };

    // copy some indices for convenience
142
    typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    enum {
        lPhaseIdx = Indices::wPhaseIdx,
        gPhaseIdx = Indices::nPhaseIdx,


        BrineIdx = FluidSystem::BrineIdx,
        CO2Idx = FluidSystem::CO2Idx,

        conti0EqIdx = Indices::conti0EqIdx,
        contiCO2EqIdx = conti0EqIdx + CO2Idx,
#if !ISOTHERMAL
        temperatureIdx = CO2Idx +1,
        energyEqIdx = contiCO2EqIdx +1,
#endif

    };


    typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
    typedef typename GET_PROP_TYPE(TypeTag, BoundaryTypes) BoundaryTypes;
    typedef typename GET_PROP_TYPE(TypeTag, TimeManager) TimeManager;

    typedef typename GridView::template Codim<0>::Entity Element;
    typedef typename GridView::template Codim<0>::Iterator ElementIterator;
    typedef typename GridView::template Codim<dim>::Entity Vertex;
    typedef typename GridView::Intersection Intersection;

    typedef typename GET_PROP_TYPE(TypeTag, FVElementGeometry) FVElementGeometry;
    typedef typename GET_PROP_TYPE(TypeTag, GridCreator) GridCreator;

    typedef Dune::FieldVector<Scalar, dimWorld> GlobalPosition;
    typedef typename GET_PROP_TYPE(TypeTag, PTAG(CO2Table)) CO2Table;
    typedef Dumux::CO2<Scalar, CO2Table> CO2;
176
177
    enum { isBox = GET_PROP_VALUE(TypeTag, ImplicitIsBox) };
    enum { dofCodim = isBox ? dim : 0 };
178
179
180
181
182
183
184
185

public:
    /*!
     * \brief The constructor
     *
     * \param timeManager The time manager
     * \param gridView The grid view
     */
186
    HeterogeneousNIProblem(TimeManager &timeManager,
187
                     const GridView &gridView)
188
189
190
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 3)
        : ParentType(timeManager, GridCreator::grid().leafGridView()),
#else
191
        : ParentType(timeManager, GridCreator::grid().leafView()),
192
#endif
193
194
195
196
197
198
          //Boundary Id Setup:
          injectionTop_ (1),
          injectionBottom_(2),
          dirichletBoundary_(3),
          noFlowBoundary_(4),
          intersectionToVertexBC_(*this)
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    {
        try
        {
            nTemperature_       = GET_RUNTIME_PARAM(TypeTag, int, FluidSystem.NTemperature);
            nPressure_          = GET_RUNTIME_PARAM(TypeTag, int, FluidSystem.NPressure);
            pressureLow_        = GET_RUNTIME_PARAM(TypeTag, Scalar, FluidSystem.PressureLow);
            pressureHigh_       = GET_RUNTIME_PARAM(TypeTag, Scalar, FluidSystem.PressureHigh);
            temperatureLow_     = GET_RUNTIME_PARAM(TypeTag, Scalar, FluidSystem.TemperatureLow);
            temperatureHigh_    = GET_RUNTIME_PARAM(TypeTag, Scalar, FluidSystem.TemperatureHigh);
            depthBOR_           = GET_RUNTIME_PARAM(TypeTag, Scalar, Problem.DepthBOR);
            name_               = GET_RUNTIME_PARAM(TypeTag, std::string, Problem.Name);
            injectionRate_      = GET_RUNTIME_PARAM(TypeTag, Scalar, Problem.InjectionRate);
            injectionPressure_ = GET_RUNTIME_PARAM(TypeTag, Scalar, Problem.InjectionPressure);
            injectionTemperature_ = GET_RUNTIME_PARAM(TypeTag, Scalar, Problem.InjectionTemperature);
        }
        catch (Dumux::ParameterException &e) {
            std::cerr << e << ". Abort!\n";
            exit(1) ;
        }
        catch (...) {
            std::cerr << "Unknown exception thrown!\n";
            exit(1);
        }

        /* Alternative syntax:
         * typedef typename GET_PROP(TypeTag, ParameterTree) ParameterTree;
         * const Dune::ParameterTree &tree = ParameterTree::tree();
         * nTemperature_       = tree.template get<int>("FluidSystem.nTemperature");
         *
         * + We see what we do
         * - Reporting whether it was used does not work
         * - Overwriting on command line not possible
        */

        GridPointer *gridPtr = &GridCreator::gridPtr();
        this->spatialParams().setParams(gridPtr);



        eps_ = 1e-6;

        // initialize the tables of the fluid system
        //FluidSystem::init();
        FluidSystem::init(/*Tmin=*/temperatureLow_,
                          /*Tmax=*/temperatureHigh_,
                          /*nT=*/nTemperature_,
                          /*pmin=*/pressureLow_,
                          /*pmax=*/pressureHigh_,
                          /*np=*/nPressure_);
248
249
250
251
252
253
254
255
256
257

        //stateing in the console whether mole or mass fractions are used
        if(!useMoles)
        {
        	std::cout<<"problem uses mass-fractions"<<std::endl;
        }
        else
        {
        	std::cout<<"problem uses mole-fractions"<<std::endl;
        }
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    }

    /*!
     * \brief Called directly after the time integration.
     */
    void postTimeStep()
    {
        // Calculate storage terms
        PrimaryVariables storageL, storageG;
        this->model().globalPhaseStorage(storageL, lPhaseIdx);
        this->model().globalPhaseStorage(storageG, gPhaseIdx);

        // Write mass balance information for rank 0
        if (this->gridView().comm().rank() == 0) {
            std::cout<<"Storage: liquid=[" << storageL << "]"
                     << " gas=[" << storageG << "]\n";
        }
    }

277
278
279
    /*!
     * \brief Add enthalpy and peremeability to output.
     */
280
281
282
    void addOutputVtkFields()
        {
            typedef Dune::BlockVector<Dune::FieldVector<double, 1> > ScalarField;
283
284
285
286

            // get the number of degrees of freedom
            unsigned numDofs = this->model().numDofs();
            unsigned numElements = this->gridView().size(0);
287
288

            //create required scalar fields
289
290
291
292
293
            ScalarField *Kxx = this->resultWriter().allocateManagedBuffer(numElements);
            ScalarField *cellPorosity = this->resultWriter().allocateManagedBuffer(numElements);
            ScalarField *boxVolume = this->resultWriter().allocateManagedBuffer(numDofs);
            ScalarField *enthalpyW = this->resultWriter().allocateManagedBuffer(numDofs);
            ScalarField *enthalpyN = this->resultWriter().allocateManagedBuffer(numDofs);
294
295
296
            (*boxVolume) = 0;

            //Fill the scalar fields with values
297

298
299
            ScalarField *rank = this->resultWriter().allocateManagedBuffer(numElements);

300
            FVElementGeometry fvGeometry;
301
302
            VolumeVariables volVars;

303
304
305
            ElementIterator eIt = this->gridView().template begin<0>();
            ElementIterator eEndIt = this->gridView().template end<0>();
            for (; eIt != eEndIt; ++eIt)
306
            {
307
308
                int eIdx = this->elementMapper().map(*eIt);
                (*rank)[eIdx] = this->gridView().comm().rank();
309
                fvGeometry.update(this->gridView(), *eIt);
310
311


312
                for (int scvIdx = 0; scvIdx < fvGeometry.numScv; ++scvIdx)
313
                {
314
                    int globalIdx = this->model().dofMapper().map(*eIt, scvIdx, dofCodim);
315
316
                    volVars.update(this->model().curSol()[globalIdx],
                                   *this,
317
                                   *eIt,
318
319
                                   fvGeometry,
                                   scvIdx,
320
                                   false);
321
                    (*boxVolume)[globalIdx] += fvGeometry.subContVol[scvIdx].volume;
322
323
324
                    (*enthalpyW)[globalIdx] = volVars.enthalpy(lPhaseIdx);
                    (*enthalpyN)[globalIdx] = volVars.enthalpy(gPhaseIdx);
                }
325
326
                (*Kxx)[eIdx] = this->spatialParams().intrinsicPermeability(*eIt, fvGeometry, /*element data*/ 0);
                (*cellPorosity)[eIdx] = this->spatialParams().porosity(*eIt, fvGeometry, /*element data*/ 0);
327
328
329
            }

            //pass the scalar fields to the vtkwriter
330
331
332
333
334
            this->resultWriter().attachDofData(*boxVolume, "boxVolume", isBox);
            this->resultWriter().attachDofData(*Kxx, "Kxx", false); //element data
            this->resultWriter().attachDofData(*cellPorosity, "cellwisePorosity", false); //element data
            this->resultWriter().attachDofData(*enthalpyW, "enthalpyW", isBox);
            this->resultWriter().attachDofData(*enthalpyN, "enthalpyN", isBox);
335
336
337
338
339
340
341
342
343
344
345

        }

    /*!
     * \brief The problem name.
     *
     * This is used as a prefix for files generated by the simulation.
     */
    const std::string name() const
    { return name_; }

346
#if ISOTHERMAL
347
348
349
    /*!
     * \brief Returns the temperature within the domain.
     *
350
351
352
353
     * \param globalPos The position
     *
     * This problem assumes a geothermal gradient with 
     * a surface temperature of 10 degrees Celsius.
354
     */
355
    Scalar temperatureAtPos(const GlobalPosition &globalPos) const
356
357
    {
        return temperature_(globalPos);
358
359
    };
#endif
360

361
362
363
364
365
    /*!
     * \brief Returns the sources within the domain.
     *
     * \param values Stores the source values, acts as return value
     * \param globalPos The global position
366
367
368
369
370
371
     *
     * Depending on whether useMoles is set on true or false, the flux has to be given either in
     * kg/(m^3*s) or mole/(m^3*s) in the input file!!
     *
     * Note that the energy balance is always calculated in terms of specific enthalpies [J/kg]
     * and that the Neumann fluxes have to be specified accordingly.
372
     */
373
374
375
376
377
378
379
380
381
    void sourceAtPos(PrimaryVariables &values,
                const GlobalPosition &globalPos) const
    {
        values = 0;
    }

    /*!
     * \name Boundary conditions
     */
382

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param values The boundary types for the conservation equations
     * \param vertex The vertex for which the boundary type is set
     */

    void boundaryTypes(BoundaryTypes &values, const Vertex &vertex) const
    {
        intersectionToVertexBC_.boundaryTypes(values, vertex);
    }

    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary segment.
     *
     * \param values The boundary types for the conservation equations
401
     * \param intersection specifies the intersection at which boundary
402
     *           condition is to set
403
     */
404
    void boundaryTypes(BoundaryTypes &values, const Intersection &intersection) const
405
    {
406
        int boundaryId = intersection.boundaryId();
407
408
409
410
411
412
413
414
415
416
417
        if (boundaryId < 1 || boundaryId > 4)
        {
            std::cout<<"invalid boundaryId: "<<boundaryId<<std::endl;
            DUNE_THROW(Dune::InvalidStateException, "Invalid " << boundaryId);
        }
        if (boundaryId == dirichletBoundary_)
            values.setAllDirichlet();
        else
            values.setAllNeumann();
    }

418
419
420
421
422
423
424
425
426
427
428
429
430
    /*!
     * \brief Evaluate the boundary conditions for a dirichlet
     *        boundary segment.
     *
     * \param values The dirichlet values for the primary variables
     * \param globalPos The global position
     *
     * For this method, the \a values parameter stores primary variables.
     */
    void dirichletAtPos(PrimaryVariables &values, const GlobalPosition &globalPos) const
    {
        initial_(values, globalPos);
    }
431

432
433
434
435
436
437
    /*!
     * \brief Evaluate the boundary conditions for a neumann
     *        boundary segment.
     *
     * \param values The neumann values for the conservation equations
     * \param element The finite element
438
     * \param fvGeometry The finite-volume geometry in the box scheme
439
     * \param intersection The intersection between element and boundary
440
441
442
443
444
     * \param scvIdx The local vertex index
     * \param boundaryFaceIdx The index of the boundary face
     *
     * For this method, the \a values parameter stores the mass flux
     * in normal direction of each phase. Negative values mean influx.
445
446
447
448
449
     *
     * Depending on whether useMoles is set on true or false, the flux has to be given either in
     * kg/(m^2*s) or mole/(m^2*s) in the input file!!
     * Note that the energy balance is always calculated in terms of specific enthalpies [J/kg]
     * and that the Neumann fluxes have to be specified accordingly.
450
451
452
     */
    void neumann(PrimaryVariables &values,
                 const Element &element,
453
                 const FVElementGeometry &fvGeometry,
454
                 const Intersection &intersection,
455
456
457
                 int scvIdx,
                 int boundaryFaceIdx) const
    {
458
        int boundaryId = intersection.boundaryId();
459
460
461
462

        values = 0;
        if (boundaryId == injectionBottom_)
        {
463
            values[contiCO2EqIdx] = -injectionRate_; ///FluidSystem::molarMass(CO2Idx); // kg/(s*m^2) or mole/(m^2*s) !!
464
#if !ISOTHERMAL
465
466
            values[energyEqIdx] = -injectionRate_/*kg/(m^2 s)*/*CO2::gasEnthalpy(
                                    injectionTemperature_, injectionPressure_)/*J/kg*/; // W/(m^2)
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
#endif
        }
    }

    // \}

    /*!
     * \name Volume terms
     */
    // \{

    /*!
     * \brief Evaluate the initial value for a control volume.
     *
     * \param values The initial values for the primary variables
482
     * \param globalPos The center of the finite volume which ought to be set.
483
484
485
486
     *
     * For this method, the \a values parameter stores primary
     * variables.
     */
487
488
    void initialAtPos(PrimaryVariables &values,
                      const GlobalPosition &globalPos) const
489
490
491
492
493
494
495
    {
        initial_(values, globalPos);
    }

    /*!
     * \brief Return the initial phase state inside a control volume.
     *
496
     * \param vertex The vertex
497
498
499
     * \param globalIdx The index of the global vertex
     * \param globalPos The global position
     */
500
    int initialPhasePresence(const Vertex &vertex,
501
502
                             int &globalIdx,
                             const GlobalPosition &globalPos) const
503
    { return Indices::wPhaseOnly; }
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535

    // \}

private:
    // the internal method for the initial condition
    void initial_(PrimaryVariables &values,
                  const GlobalPosition &globalPos) const
    {
        Scalar temp = temperature_(globalPos);
        Scalar densityW = FluidSystem::Brine::liquidDensity(temp, 1e7);

        Scalar pl =  1e5 - densityW*this->gravity()[dim-1]*(depthBOR_ - globalPos[dim-1]);
        Scalar moleFracLiquidCO2 = 0.00;
        Scalar moleFracLiquidBrine = 1.0 - moleFracLiquidCO2;

        Scalar meanM =
            FluidSystem::molarMass(BrineIdx)*moleFracLiquidBrine +
            FluidSystem::molarMass(CO2Idx)*moleFracLiquidCO2;

        Scalar massFracLiquidCO2 = moleFracLiquidCO2*FluidSystem::molarMass(CO2Idx)/meanM;

        values[Indices::pressureIdx] = pl;
        values[Indices::switchIdx] = massFracLiquidCO2;
#if !ISOTHERMAL
            values[temperatureIdx] = temperature_(globalPos); //K
#endif


    }

    Scalar temperature_(const GlobalPosition globalPos) const
    {
536
        Scalar T = 283.0 + (depthBOR_ - globalPos[dim-1])*0.03; 
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
        return T;
    };

    Scalar depthBOR_;
    Scalar injectionRate_;
    Scalar injectionPressure_;
    Scalar injectionTemperature_;
    Scalar eps_;

    int nTemperature_;
    int nPressure_;

    std::string name_ ;

    Scalar pressureLow_, pressureHigh_;
    Scalar temperatureLow_, temperatureHigh_;

    int injectionTop_;
    int injectionBottom_;
    int dirichletBoundary_;
    int noFlowBoundary_;

    const IntersectionToVertexBC<TypeTag> intersectionToVertexBC_;
};
} //end namespace

#endif