co2.hh 12.5 KB
Newer Older
Bernd Flemisch's avatar
Bernd Flemisch committed
1
2
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
3
/*****************************************************************************
Bernd Flemisch's avatar
Bernd Flemisch committed
4
 *   See the file COPYING for full copying permissions.                      *
5
6
7
8
9
10
11
12
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
Bernd Flemisch's avatar
Bernd Flemisch committed
13
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
 * \brief A class for the CO2 fluid properties
 */
#ifndef DUMUX_CO2_HH
#define DUMUX_CO2_HH

#include <dumux/common/exceptions.hh>
#include <dumux/material/components/component.hh>
#include <dumux/material/constants.hh>
#include <dumux/material/idealgas.hh>

#include <cmath>
#include <iostream>

namespace Dumux
{
/*!
 * \brief A class for the CO2 fluid properties
 *
 * Under reservoir conditions, CO2 is typically in supercritical state. These
 * properties can be provided in tabulated form, which is necessary for this
 * component implementation. The template is passed through the fluidsystem
 * brineco2fluidsystem.hh
 * If only gaseous co2 is regarded, one can use Dumux::SimpleCO2 instead.
 */
template <class Scalar, class CO2Tables>
class CO2 : public Component<Scalar, CO2<Scalar, CO2Tables> >
{
49
    static const Scalar R;
50
51
52
53
54
55
56
57
58
59
60
61
    typedef typename Dumux::IdealGas<Scalar> IdealGas;
    
    static bool warningThrown;

public:
    /*!
     * \brief A human readable name for the CO2.
     */
    static const char *name()
    { return "CO2"; }

    /*!
62
     * \brief The mass in \f$\mathrm{[kg/mol]}\f$ of one mole of CO2.
63
64
     */
    static Scalar molarMass()
65
    { return 44e-3; /* [kg/mol] */ }
66
67

    /*!
68
     * \brief Returns the critical temperature \f$\mathrm{[K]}\f$ of CO2
69
70
71
72
73
     */
    static Scalar criticalTemperature()
    { return 273.15 + 30.95; /* [K] */ }

    /*!
74
     * \brief Returns the critical pressure \f$\mathrm{[Pa]}\f$ of CO2
75
76
     */
    static Scalar criticalPressure()
77
    { return 73.8e5; /* [Pa] */ }
78
79

    /*!
80
     * \brief Returns the temperature \f$\mathrm{[K]}\f$ at CO2's triple point.
81
82
83
84
85
     */
    static Scalar tripleTemperature()
    { return 273.15 - 56.35; /* [K] */ }

    /*!
86
     * \brief Returns the pressure \f$\mathrm{[Pa]}\f$ at CO2's triple point.
87
88
89
90
91
     */
    static Scalar triplePressure()
    { return 5.11e5; /* [N/m^2] */ }

    /*!
92
     * \brief Returns the pressure \f$\mathrm{[Pa]}\f$ at CO2's triple point.
93
94
     */
    static Scalar minTabulatedPressure()
95
    { return CO2Tables::tabulatedEnthalpy.minPress(); /* [Pa] */ }
96
97

    /*!
98
     * \brief Returns the pressure \f$\mathrm{[Pa]}\f$ at CO2's triple point.
99
100
     */
    static Scalar maxTabulatedPressure()
101
    { return CO2Tables::tabulatedEnthalpy.maxPress(); /* [Pa] */ }
102
103

    /*!
104
     * \brief Returns the temperature \f$\mathrm{[K]}\f$ at CO2's triple point.
105
106
     */
    static Scalar minTabulatedTemperature()
107
    { return CO2Tables::tabulatedEnthalpy.minTemp(); /* [K] */ }
108
109

    /*!
110
     * \brief Returns the temperature \f$\mathrm{[K]}\f$ at CO2's triple point.
111
112
     */
    static Scalar maxTabulatedTemperature()
113
    { return CO2Tables::tabulatedEnthalpy.maxTemp(); /* [K] */ }
114
115

    /*!
116
     * \brief The vapor pressure in \f$\mathrm{[Pa]}\f$ of pure CO2
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
     *        at a given temperature.
     *
     * See:
     *
     * R. Span and W. Wagner: A New Equation of State for Carbon
     * Dioxide Covering the Fluid Region from the Triple‐Point
     * Temperature to 1100 K at Pressures up to 800 MPa. Journal of
     * Physical and Chemical Reference Data, 25 (6), pp. 1509-1596,
     * 1996
     */
    static Scalar vaporPressure(Scalar T)
    { 
        static const Scalar a[4] = 
            { -7.0602087, 1.9391218, -1.6463597, -3.2995634 };
        static const Scalar t[4] = 
            { 1.0, 1.5, 2.0, 4.0 };

        // this is on page 1524 of the reference
        Scalar exponent = 0;
        Scalar Tred = T/criticalTemperature();
        for (int i = 0; i < 5; ++i) {
            exponent += a[i]*std::pow(1 - Tred, t[i]);
        }
        exponent *= 1.0/Tred;
        
        return std::exp(exponent)*criticalPressure();
    }

    /*!
146
     * \brief Specific enthalpy of gaseous CO2 \f$\mathrm{[J/kg]}\f$.
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
     */
    static Scalar gasEnthalpy(Scalar temperature,
                              Scalar pressure)
    {
        if ((temperature < criticalTemperature() or pressure < criticalPressure()) and !warningThrown)
        {
            Dune::dwarn << "Subcritical values: Be aware to use "
                        <<"Tables with sufficient resolution!"<< std::endl;
            warningThrown=true;
        }
        return
            CO2Tables::tabulatedEnthalpy.at(temperature, pressure);
    }

    /*!
162
     * \brief Specific enthalpy of liquid CO2 \f$\mathrm{[J/kg]}\f$.
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
     */
    static Scalar liquidEnthalpy(Scalar temperature,
                                 Scalar pressure)
    {
        if ((temperature < criticalTemperature() or pressure < criticalPressure()) and !warningThrown)
        {
            Dune::dwarn << "Subcritical values: Be aware to use "
                        <<"Tables with sufficient resolution!"<< std::endl;
            warningThrown=true;
        }

        return gasEnthalpy(temperature, pressure);
    }

    /*!
178
     * \brief Specific internal energy of CO2 \f$\mathrm{[J/kg]}\f$.
179
180
181
182
183
184
185
186
187
188
189
     */
    static Scalar gasInternalEnergy(Scalar temperature,
                                    Scalar pressure)
    {
        Scalar h = gasEnthalpy(temperature, pressure);
        Scalar rho = gasDensity(temperature, pressure);

        return h - (pressure / rho);
    }

    /*!
190
     * \brief Specific internal energy of liquid CO2 \f$\mathrm{[J/kg]}\f$.
191
192
193
194
195
196
197
198
199
200
201
     */
    static Scalar liquidInternalEnergy(Scalar temperature,
                                       Scalar pressure)
    {
        Scalar h = liquidEnthalpy(temperature, pressure);
        Scalar rho = liquidDensity(temperature, pressure);

        return h - (pressure / rho);
    }

    /*!
202
     * \brief The density of CO2 at a given pressure and temperature \f$\mathrm{[kg/m^3]}\f$.
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    */
    static Scalar gasDensity(Scalar temperature, Scalar pressure)
    {
        if ((temperature < criticalTemperature() or pressure < criticalPressure()) and !warningThrown)
        {
            Dune::dwarn << "Subcritical values: Be aware to use "
                        <<"Tables with sufficient resolution!"<< std::endl;
            warningThrown=true;
        }

        return CO2Tables::tabulatedDensity.at(temperature, pressure);
    }

    /*!
217
     * \brief The density of pure CO2 at a given pressure and temperature \f$\mathrm{[kg/m^3]}\f$.
218
219
220
221
222
223
224
225
226
227
     */
    static Scalar liquidDensity(Scalar temperature, Scalar pressure)
    {
        if ((temperature < criticalTemperature() or pressure < criticalPressure()) and !warningThrown)
        {
            Dune::dwarn << "Subcritical values: Be aware to use "
                        <<"Tables with sufficient resolution!"<< std::endl;
            warningThrown=true;
        }
        return CO2Tables::tabulatedDensity.at(temperature, pressure);
228
    }
229
230
231
232
    /*!
     * \brief The pressure of steam in \f$\mathrm{[Pa]}\f$ at a given density and temperature.
     *
     * \param temperature temperature of component in \f$\mathrm{[K]}\f$
233
     * \param density density of component in \f$\mathrm{[kg/m^3]}\f$
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
     */
    static Scalar gasPressure(Scalar temperature, Scalar density)
    {
        DUNE_THROW(NumericalProblem, "CO2::gasPressure()");
    }

    /*!
     * \brief The pressure of liquid water in \f$\mathrm{[Pa]}\f$ at a given density and
     *        temperature.
     *
     * \param temperature temperature of component in \f$\mathrm{[K]}\f$
     * \param density density of component in \f$\mathrm{[kg/m^3]}\f$
     */
    static Scalar liquidPressure(Scalar temperature, Scalar density)
    {
        DUNE_THROW(NumericalProblem, "CO2::liquidPressure()");
    }

252
    /*!
253
     * \brief Specific isobaric heat capacity of the component \f$\mathrm{[J/(kg*K)]}\f$ as a liquid.
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
     * USE WITH CAUTION! Exploits enthalpy function with artificial increment
     * of the temperature!
     * Equation with which the specific heat capacity is calculated : \f$ c_p = \frac{dh}{dT}\f$
     * \param temperature temperature of component in \f$\mathrm{[K]}\f$
     * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
     */
    static Scalar liquidHeatCapacity(Scalar temperature, Scalar pressure)
    {
        //temperature difference :
        Scalar dT = 1.; // 1K temperature increment
        Scalar temperature2 = temperature+dT;

        // enthalpy difference
        Scalar hold = liquidEnthalpy(temperature, pressure);
        Scalar hnew = liquidEnthalpy(temperature2, pressure);
        Scalar dh = hold-hnew;

        //specific heat capacity
        return dh/dT ;
    }

275
276

    /*!
277
     * \brief The dynamic viscosity \f$\mathrm{[Pa*s]}\f$ of CO2.
278
     * Equations given in: - Vesovic et al., 1990
Bernd Flemisch's avatar
Bernd Flemisch committed
279
     *                     - Fenhour et al., 1998
280
281
     * \param temperature temperature of component in \f$\mathrm{[K]}\f$
     * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
     */
    static Scalar gasViscosity(Scalar temperature, Scalar pressure)
    {
        static const double a0 = 0.235156;
        static const double a1 = -0.491266;
        static const double a2 = 5.211155E-2;
        static const double a3 = 5.347906E-2;
        static const double a4 = -1.537102E-2;

        static const double d11 = 0.4071119E-2;
        static const double d21 = 0.7198037E-4;
        static const double d64 = 0.2411697E-16;
        static const double d81 = 0.2971072E-22;
        static const double d82 = -0.1627888E-22;

        static const double ESP = 251.196;

        double mu0, SigmaStar, TStar;
        double dmu, rho;
        double visco_CO2;

        if(temperature < 275.) // regularisation
        {
            temperature = 275;
            Dune::dgrave << "Temperature below 275K in viscosity function:"
                    << "Regularizing tempereature to 275K. " << std::endl;
        }


        TStar = temperature/ESP;

        /* mu0: viscosity in zero-density limit */
        SigmaStar = exp(a0 + a1*log(TStar)
                        + a2*log(TStar)*log(TStar)
                        + a3*log(TStar)*log(TStar)*log(TStar)
                        + a4*log(TStar)*log(TStar)*log(TStar)*log(TStar) );

        mu0 = 1.00697*sqrt(temperature) / SigmaStar;

        /* dmu : excess viscosity at elevated density */
        rho = gasDensity(temperature, pressure); /* CO2 mass density [kg/m^3] */

        dmu = d11*rho + d21*rho*rho + d64*pow(rho,6)/(TStar*TStar*TStar)
            + d81*pow(rho,8) + d82*pow(rho,8)/TStar;

        /* dmucrit : viscosity increase near the critical point */

        // False (Lybke 2July2007)
        //e1 = 5.5930E-3;
        //e2 = 6.1757E-5;
        //e4 = 2.6430E-11;
        //dmucrit = e1*rho + e2*rho*rho + e4*rho*rho*rho;
        //visco_CO2 = (mu0 + dmu + dmucrit)/1.0E6;   /* conversion to [Pa s] */

        visco_CO2 = (mu0 + dmu)/1.0E6;   /* conversion to [Pa s] */

        return visco_CO2;
    };

    /*!
342
343
344
     * \brief The dynamic viscosity \f$\mathrm{[Pa*s]}\f$ of pure CO2.
     * \param temperature temperature of component in \f$\mathrm{[K]}\f$
     * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
345
346
347
348
     */
    static Scalar liquidViscosity(Scalar temperature, Scalar pressure)
    {
        // no difference for supercritical CO2
349
        return gasViscosity(temperature, pressure);
350
351
352
    };
};

353
354
355
template <class Scalar, class CO2Tables>
const Scalar CO2<Scalar, CO2Tables>::R = Constants<Scalar>::R;

356
357
358
template <class Scalar, class CO2Tables>
bool CO2<Scalar, CO2Tables>::warningThrown = false;

359
} // end namespace
360
361

#endif