implicitlocaljacobian.hh 20.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
21
 * \brief Caculates the Jacobian of the local residual for fully-implicit models
22
 */
23
24
#ifndef DUMUX_IMPLICIT_LOCAL_JACOBIAN_HH
#define DUMUX_IMPLICIT_LOCAL_JACOBIAN_HH
25
26
27

#include <dune/istl/matrix.hh>
#include <dumux/common/math.hh>
28
29
30
#include <dumux/common/valgrind.hh>

#include "implicitproperties.hh"
31
32
33
34

namespace Dumux
{
/*!
35
 * \ingroup ImplicitLocalJacobian
36
 * \brief Calculates the Jacobian of the local residual for fully-implicit models
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
 *
 * The default behavior is to use numeric differentiation, i.e.
 * forward or backward differences (2nd order), or central
 * differences (3rd order). The method used is determined by the
 * "NumericDifferenceMethod" property:
 *
 * - if the value of this property is smaller than 0, backward
 *   differences are used, i.e.:
 *   \f[
 \frac{\partial f(x)}{\partial x} \approx \frac{f(x) - f(x - \epsilon)}{\epsilon}
 *   \f]
 *
 * - if the value of this property is 0, central
 *   differences are used, i.e.:
 *   \f[
 \frac{\partial f(x)}{\partial x} \approx \frac{f(x + \epsilon) - f(x - \epsilon)}{2 \epsilon}
 *   \f]
 *
 * - if the value of this property is larger than 0, forward
 *   differences are used, i.e.:
 *   \f[
 \frac{\partial f(x)}{\partial x} \approx \frac{f(x + \epsilon) - f(x)}{\epsilon}
 *   \f]
 *
 * Here, \f$ f \f$ is the residual function for all equations, \f$x\f$
 * is the value of a sub-control volume's primary variable at the
 * evaluation point and \f$\epsilon\f$ is a small value larger than 0.
 */
template<class TypeTag>
66
class ImplicitLocalJacobian
67
68
69
70
71
72
73
74
{
private:
    typedef typename GET_PROP_TYPE(TypeTag, LocalJacobian) Implementation;
    typedef typename GET_PROP_TYPE(TypeTag, LocalResidual) LocalResidual;
    typedef typename GET_PROP_TYPE(TypeTag, Problem) Problem;
    typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
    typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
    typedef typename GridView::template Codim<0>::Entity Element;
75
    typedef typename GridView::Traits::template Codim<0>::EntityPointer ElementPointer;
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    typedef typename GET_PROP_TYPE(TypeTag, JacobianAssembler) JacobianAssembler;

    enum {
        numEq = GET_PROP_VALUE(TypeTag, NumEq),
        dim = GridView::dimension,

        Green = JacobianAssembler::Green
    };

    typedef typename GET_PROP_TYPE(TypeTag, FVElementGeometry) FVElementGeometry;
    typedef typename GET_PROP_TYPE(TypeTag, VertexMapper) VertexMapper;
    typedef typename GET_PROP_TYPE(TypeTag, ElementSolutionVector) ElementSolutionVector;
    typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;

    typedef typename GET_PROP_TYPE(TypeTag, VolumeVariables) VolumeVariables;
    typedef typename GET_PROP_TYPE(TypeTag, ElementVolumeVariables) ElementVolumeVariables;
    typedef typename GET_PROP_TYPE(TypeTag, ElementBoundaryTypes) ElementBoundaryTypes;

    typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
    typedef Dune::FieldMatrix<Scalar, numEq, numEq> MatrixBlock;
    typedef Dune::Matrix<MatrixBlock> LocalBlockMatrix;

98
99
    enum { isBox = GET_PROP_VALUE(TypeTag, ImplicitIsBox) };

100
    // copying a local jacobian is not a good idea
101
    ImplicitLocalJacobian(const ImplicitLocalJacobian &);
102
103

public:
104
    ImplicitLocalJacobian()
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    {
        numericDifferenceMethod_ = GET_PARAM_FROM_GROUP(TypeTag, int, Implicit, NumericDifferenceMethod);
        Valgrind::SetUndefined(problemPtr_);
    }


    /*!
     * \brief Initialize the local Jacobian object.
     *
     * At this point we can assume that everything has been allocated,
     * although some objects may not yet be completely initialized.
     *
     * \param prob The problem which we want to simulate.
     */
    void init(Problem &prob)
    {
        problemPtr_ = &prob;
        localResidual_.init(prob);

        // assume quadrilinears as elements with most vertices
125
126
127
128
129
130
131
132
133
134
        if (isBox)
        {
            A_.setSize(2<<dim, 2<<dim);
            storageJacobian_.resize(2<<dim);
        }
        else 
        {
            A_.setSize(1, 2<<dim);
            storageJacobian_.resize(1);
        }
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    }

    /*!
     * \brief Assemble an element's local Jacobian matrix of the
     *        defect.
     *
     * \param element The DUNE Codim<0> entity which we look at.
     */
    void assemble(const Element &element)
    {
        // set the current grid element and update the element's
        // finite volume geometry
        elemPtr_ = &element;
        fvElemGeom_.update(gridView_(), element);
        reset_();

        bcTypes_.update(problem_(), element_(), fvElemGeom_);

        // set the hints for the volume variables
        model_().setHints(element, prevVolVars_, curVolVars_);

        // update the secondary variables for the element at the last
        // and the current time levels
        prevVolVars_.update(problem_(),
                            element_(),
                            fvElemGeom_,
                            true /* isOldSol? */);

        curVolVars_.update(problem_(),
                           element_(),
                           fvElemGeom_,
                           false /* isOldSol? */);

        // update the hints of the model
        model_().updateCurHints(element, curVolVars_);

        // calculate the local residual
        localResidual().eval(element_(),
                             fvElemGeom_,
                             prevVolVars_,
                             curVolVars_,
                             bcTypes_);
        residual_ = localResidual().residual();
        storageTerm_ = localResidual().storageTerm();

        model_().updatePVWeights(element_(), curVolVars_);

        // calculate the local jacobian matrix
183
184
185
        int numRows, numCols;
        if (isBox)
        {
186
            numRows = numCols = fvElemGeom_.numScv;
187
188
189
190
191
192
193
194
195
        }
        else 
        {
            numRows = 1;
            numCols = fvElemGeom_.numNeighbors;
        }
        ElementSolutionVector partialDeriv(numRows);
        PrimaryVariables storageDeriv(0.0);
        for (int col = 0; col < numCols; col++) {
196
197
198
            for (int pvIdx = 0; pvIdx < numEq; pvIdx++) {
                asImp_().evalPartialDerivative_(partialDeriv,
                                                storageDeriv,
199
                                                col,
200
201
202
203
                                                pvIdx);

                // update the local stiffness matrix with the current partial
                // derivatives
204
                updateLocalJacobian_(col,
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
                                     pvIdx,
                                     partialDeriv,
                                     storageDeriv);
            }
        }
    }

    /*!
     * \brief Returns a reference to the object which calculates the
     *        local residual.
     */
    const LocalResidual &localResidual() const
    { return localResidual_; }

    /*!
     * \brief Returns a reference to the object which calculates the
     *        local residual.
     */
    LocalResidual &localResidual()
    { return localResidual_; }

    /*!
227
228
     * \brief Returns the Jacobian of the equations at subcontrolvolume i 
     * to the primary variables at subcontrolvolume j.
229
     *
230
     * \param i The local subcontrolvolume index on which
231
     *          the equations are defined
232
     * \param j The local subcontrolvolume index which holds
233
234
235
236
237
238
     *          primary variables
     */
    const MatrixBlock &mat(const int i, const int j) const
    { return A_[i][j]; }

    /*!
239
     * \brief Returns the Jacobian of the storage term at subcontrolvolume i.
240
     *
241
     * \param i The local subcontrolvolume index
242
243
244
245
246
     */
    const MatrixBlock &storageJacobian(const int i) const
    { return storageJacobian_[i]; }

    /*!
247
     * \brief Returns the residual of the equations at subcontrolvolume i.
248
     *
249
     * \param i The local subcontrolvolume index on which
250
251
252
253
254
255
     *          the equations are defined
     */
    const PrimaryVariables &residual(const int i) const
    { return residual_[i]; }

    /*!
256
     * \brief Returns the storage term for subcontrolvolume i.
257
     *
258
     * \param i The local subcontrolvolume index on which
259
260
261
262
263
264
265
266
267
     *          the equations are defined
     */
    const PrimaryVariables &storageTerm(const int i) const
    { return storageTerm_[i]; }

    /*!
     * \brief Returns the epsilon value which is added and removed
     *        from the current solution.
     *
268
     * \param scvIdx     The local index of the element's subcontrolvolume for
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
     *                   which the local derivative ought to be calculated.
     * \param pvIdx      The index of the primary variable which gets varied
     */
    Scalar numericEpsilon(const int scvIdx,
                          const int pvIdx) const
    {
        // define the base epsilon as the geometric mean of 1 and the
        // resolution of the scalar type. E.g. for standard 64 bit
        // floating point values, the resolution is about 10^-16 and
        // the base epsilon is thus approximately 10^-8.
        /*
        static const Scalar baseEps
            = Dumux::geometricMean<Scalar>(std::numeric_limits<Scalar>::epsilon(), 1.0);
        */
        static const Scalar baseEps = 1e-10;
        assert(std::numeric_limits<Scalar>::epsilon()*1e4 < baseEps);
        // the epsilon value used for the numeric differentiation is
        // now scaled by the absolute value of the primary variable...
        Scalar priVar = this->curVolVars_[scvIdx].priVar(pvIdx);
        return baseEps*(std::abs(priVar) + 1.0);
    }

protected:
    Implementation &asImp_()
    { return *static_cast<Implementation*>(this); }
    const Implementation &asImp_() const
    { return *static_cast<const Implementation*>(this); }

    /*!
     * \brief Returns a reference to the problem.
     */
    const Problem &problem_() const
    {
        Valgrind::CheckDefined(problemPtr_);
        return *problemPtr_;
    };

    /*!
     * \brief Returns a reference to the grid view.
     */
    const GridView &gridView_() const
    { return problem_().gridView(); }

    /*!
     * \brief Returns a reference to the element.
     */
    const Element &element_() const
    {
        Valgrind::CheckDefined(elemPtr_);
        return *elemPtr_;
    };

    /*!
     * \brief Returns a reference to the model.
     */
    const Model &model_() const
    { return problem_().model(); };

    /*!
     * \brief Returns a reference to the jacobian assembler.
     */
    const JacobianAssembler &jacAsm_() const
    { return model_().jacobianAssembler(); }

    /*!
     * \brief Returns a reference to the vertex mapper.
     */
    const VertexMapper &vertexMapper_() const
    { return problem_().vertexMapper(); };

    /*!
     * \brief Reset the local jacobian matrix to 0
     */
    void reset_()
    {
344
        for (unsigned int i = 0; i < A_.N(); ++ i) {
345
            storageJacobian_[i] = 0.0;
346
            for (unsigned int j = 0; j < A_.M(); ++ j) {
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
                A_[i][j] = 0.0;
            }
        }
    }

    /*!
     * \brief Compute the partial derivatives to a primary variable at
     *        an degree of freedom.
     *
     * This method can be overwritten by the implementation if a
     * better scheme than numerical differentiation is available.
     *
     * The default implementation of this method uses numeric
     * differentiation, i.e. forward or backward differences (2nd
     * order), or central differences (3rd order). The method used is
     * determined by the "NumericDifferenceMethod" property:
     *
     * - if the value of this property is smaller than 0, backward
     *   differences are used, i.e.:
     *   \f[
         \frac{\partial f(x)}{\partial x} \approx \frac{f(x) - f(x - \epsilon)}{\epsilon}
     *   \f]
     *
     * - if the value of this property is 0, central
     *   differences are used, i.e.:
     *   \f[
           \frac{\partial f(x)}{\partial x} \approx \frac{f(x + \epsilon) - f(x - \epsilon)}{2 \epsilon}
     *   \f]
     *
     * - if the value of this property is larger than 0, forward
     *   differences are used, i.e.:
     *   \f[
           \frac{\partial f(x)}{\partial x} \approx \frac{f(x + \epsilon) - f(x)}{\epsilon}
     *   \f]
     *
     * Here, \f$ f \f$ is the residual function for all equations, \f$x\f$
     * is the value of a sub-control volume's primary variable at the
     * evaluation point and \f$\epsilon\f$ is a small value larger than 0.
     *
     * \param partialDeriv The vector storing the partial derivatives of all
     *              equations
     * \param storageDeriv the mass matrix contributions
389
390
391
392
393
394
     * \param col The block column index of the degree of freedom 
     *            for which the partial derivative is calculated.
     *            Box: a sub-control volume index.
     *            Cell centered: a neighbor index.
     * \param pvIdx The index of the primary variable 
     *              for which the partial derivative is calculated
395
396
397
     */
    void evalPartialDerivative_(ElementSolutionVector &partialDeriv,
                                PrimaryVariables &storageDeriv,
398
                                const int col,
399
400
                                const int pvIdx)
    {
401
402
403
404
405
406
407
408
409
410
411
412
413
        int globalIdx;
        FVElementGeometry neighborFVGeom;
        ElementPointer neighbor(element_());
        if (isBox)
        {
            globalIdx = vertexMapper_().map(element_(), col, dim);
        }
        else
        {
            neighbor = fvElemGeom_.neighbors[col];
            neighborFVGeom.updateInner(*neighbor);
            globalIdx = problemPtr_->elementMapper().map(*neighbor);
        }
414
415

        PrimaryVariables priVars(model_().curSol()[globalIdx]);
416
        VolumeVariables origVolVars(curVolVars_[col]);
417

418
419
        curVolVars_[col].setEvalPoint(&origVolVars);
        Scalar eps = asImp_().numericEpsilon(col, pvIdx);
420
421
422
423
424
425
426
427
428
429
430
        Scalar delta = 0;

        if (numericDifferenceMethod_ >= 0) {
            // we are not using backward differences, i.e. we need to
            // calculate f(x + \epsilon)

            // deflect primary variables
            priVars[pvIdx] += eps;
            delta += eps;

            // calculate the residual
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
            if (isBox)
                curVolVars_[col].update(priVars,
                                        problem_(),
                                        element_(),
                                        fvElemGeom_,
                                        col,
                                        false);
            else
                curVolVars_[col].update(priVars,
                                        problem_(),
                                        *neighbor,
                                        neighborFVGeom,
                                        /*scvIdx=*/0,
                                        false);
                   
446
447
448
449
450
451
452
453
            localResidual().eval(element_(),
                                 fvElemGeom_,
                                 prevVolVars_,
                                 curVolVars_,
                                 bcTypes_);

            // store the residual and the storage term
            partialDeriv = localResidual().residual();
454
455
            if (isBox || col == 0)
                storageDeriv = localResidual().storageTerm()[col];
456
457
458
459
460
461
        }
        else {
            // we are using backward differences, i.e. we don't need
            // to calculate f(x + \epsilon) and we can recycle the
            // (already calculated) residual f(x)
            partialDeriv = residual_;
462
463
            if (isBox || col == 0)
                storageDeriv = storageTerm_[col];
464
465
466
467
        }


        if (numericDifferenceMethod_ <= 0) {
468
            // we are using forward differences, i.e. we
469
470
471
472
473
474
475
            // need to calculate f(x - \epsilon)

            // deflect the primary variables
            priVars[pvIdx] -= delta + eps;
            delta += eps;

            // calculate residual again
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
            if (isBox)
                curVolVars_[col].update(priVars,
                                        problem_(),
                                        element_(),
                                        fvElemGeom_,
                                        col,
                                        false);
            else
                curVolVars_[col].update(priVars,
                                        problem_(),
                                        *neighbor,
                                        neighborFVGeom,
                                        /*scvIdx=*/0,
                                        false);

491
492
493
494
495
496
            localResidual().eval(element_(),
                                 fvElemGeom_,
                                 prevVolVars_,
                                 curVolVars_,
                                 bcTypes_);
            partialDeriv -= localResidual().residual();
497
498
            if (isBox || col == 0)
                storageDeriv -= localResidual().storageTerm()[col];
499
500
501
502
503
504
        }
        else {
            // we are using forward differences, i.e. we don't need to
            // calculate f(x - \epsilon) and we can recycle the
            // (already calculated) residual f(x)
            partialDeriv -= residual_;
505
506
            if (isBox || col == 0)
                storageDeriv -= storageTerm_[col];
507
508
509
510
511
512
513
514
        }

        // divide difference in residuals by the magnitude of the
        // deflections between the two function evaluation
        partialDeriv /= delta;
        storageDeriv /= delta;

        // restore the original state of the element's volume variables
515
        curVolVars_[col] = origVolVars;
516
517
518
519
520
521
522
523
524
525

#if HAVE_VALGRIND
        for (unsigned i = 0; i < partialDeriv.size(); ++i)
            Valgrind::CheckDefined(partialDeriv[i]);
#endif
    }

    /*!
     * \brief Updates the current local Jacobian matrix with the
     *        partial derivatives of all equations in regard to the
526
     *        primary variable 'pvIdx' at dof 'col' .
527
     */
528
    void updateLocalJacobian_(const int col,
529
530
531
532
533
                              const int pvIdx,
                              const ElementSolutionVector &partialDeriv,
                              const PrimaryVariables &storageDeriv)
    {
        // store the derivative of the storage term
534
535
536
537
538
        if (isBox || col == 0)
        {
            for (int eqIdx = 0; eqIdx < numEq; eqIdx++) {
                storageJacobian_[col][eqIdx][pvIdx] = storageDeriv[eqIdx];
            }
539
540
        }

541
        for (int i = 0; i < fvElemGeom_.numScv; i++)
542
543
        {
            // Green vertices are not to be changed!
544
            if (!isBox || jacAsm_().vertexColor(element_(), i) != Green) {
545
                for (int eqIdx = 0; eqIdx < numEq; eqIdx++) {
546
547
548
549
550
551
                    // A[i][col][eqIdx][pvIdx] is the rate of change of
                    // the residual of equation 'eqIdx' at dof 'i'
                    // depending on the primary variable 'pvIdx' at dof
                    // 'col'.
                    this->A_[i][col][eqIdx][pvIdx] = partialDeriv[i][eqIdx];
                    Valgrind::CheckDefined(this->A_[i][col][eqIdx][pvIdx]);
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
                }
            }
        }
    }

    const Element *elemPtr_;
    FVElementGeometry fvElemGeom_;

    ElementBoundaryTypes bcTypes_;

    // The problem we would like to solve
    Problem *problemPtr_;

    // secondary variables at the previous and at the current time
    // levels
    ElementVolumeVariables prevVolVars_;
    ElementVolumeVariables curVolVars_;

    LocalResidual localResidual_;

    LocalBlockMatrix A_;
    std::vector<MatrixBlock> storageJacobian_;

    ElementSolutionVector residual_;
    ElementSolutionVector storageTerm_;

    int numericDifferenceMethod_;
};
}

#endif